控制离散分数阶布鲁塞尔子模型中的混沌和二维分岔

IF 2.3 3区 工程技术 Q2 ACOUSTICS
Qamar Din
{"title":"控制离散分数阶布鲁塞尔子模型中的混沌和二维分岔","authors":"Qamar Din","doi":"10.1177/10775463241267033","DOIUrl":null,"url":null,"abstract":"This paper explores the qualitative behavior of a discrete fractional–order Brusselator model. We analyze the local dynamics of the model around its fixed point and determine its topological classification. We perform the bifurcation analysis for both codimension-one and codimension-two cases to examine the system behavior near critical parameter values. Using normal form theory and center manifold theorem (CMT), we prove that the model exhibits period-doubling bifurcation around its interior fixed point. We also study the existence and direction of Neimark–Sacker bifurcation using normal form theory. For codimension-two bifurcation, we show that the model undergoes 1:2, 1:3, and 1:4 resonances by applying normal form theory and suitable affine transformations. The system displays a rich variety of bifurcations, including quasi–periodicity, periodic orbits, chaotic behavior, and resonance bifurcation. Furthermore, the existence of chaos is discussed in the sense of Marotto, and a novel chaos control method is proposed for discrete Brusselator model using an extended pole–placement approach. This modified approach is more suitable for codimension-two bifurcation situations. Numerical simulations are used to illustrate the theoretical discussion.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"15 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlling chaos and codimension-two bifurcation in a discrete fractional-order Brusselator model\",\"authors\":\"Qamar Din\",\"doi\":\"10.1177/10775463241267033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the qualitative behavior of a discrete fractional–order Brusselator model. We analyze the local dynamics of the model around its fixed point and determine its topological classification. We perform the bifurcation analysis for both codimension-one and codimension-two cases to examine the system behavior near critical parameter values. Using normal form theory and center manifold theorem (CMT), we prove that the model exhibits period-doubling bifurcation around its interior fixed point. We also study the existence and direction of Neimark–Sacker bifurcation using normal form theory. For codimension-two bifurcation, we show that the model undergoes 1:2, 1:3, and 1:4 resonances by applying normal form theory and suitable affine transformations. The system displays a rich variety of bifurcations, including quasi–periodicity, periodic orbits, chaotic behavior, and resonance bifurcation. Furthermore, the existence of chaos is discussed in the sense of Marotto, and a novel chaos control method is proposed for discrete Brusselator model using an extended pole–placement approach. This modified approach is more suitable for codimension-two bifurcation situations. Numerical simulations are used to illustrate the theoretical discussion.\",\"PeriodicalId\":17511,\"journal\":{\"name\":\"Journal of Vibration and Control\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10775463241267033\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10775463241267033","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了离散分数阶布鲁塞尔子模型的定性行为。我们分析了模型在其定点附近的局部动力学,并确定了其拓扑分类。我们对标度一和标度二的情况进行了分岔分析,以研究临界参数值附近的系统行为。利用正态形式理论和中心流形定理(CMT),我们证明了模型在其内部定点附近表现出周期加倍分岔。我们还利用正态形式理论研究了 Neimark-Sacker 分岔的存在性和方向。对于二维分岔,我们运用正态形式理论和适当的仿射变换证明了该模型经历了 1:2、1:3 和 1:4 共振。该系统显示出丰富多样的分岔,包括准周期性、周期轨道、混沌行为和共振分岔。此外,还在 Marotto 的意义上讨论了混沌的存在,并针对离散布鲁塞尔器模型提出了一种新的混沌控制方法,该方法使用了一种扩展的极点置换方法。这种改进方法更适用于二维分岔情况。数值模拟用于说明理论讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controlling chaos and codimension-two bifurcation in a discrete fractional-order Brusselator model
This paper explores the qualitative behavior of a discrete fractional–order Brusselator model. We analyze the local dynamics of the model around its fixed point and determine its topological classification. We perform the bifurcation analysis for both codimension-one and codimension-two cases to examine the system behavior near critical parameter values. Using normal form theory and center manifold theorem (CMT), we prove that the model exhibits period-doubling bifurcation around its interior fixed point. We also study the existence and direction of Neimark–Sacker bifurcation using normal form theory. For codimension-two bifurcation, we show that the model undergoes 1:2, 1:3, and 1:4 resonances by applying normal form theory and suitable affine transformations. The system displays a rich variety of bifurcations, including quasi–periodicity, periodic orbits, chaotic behavior, and resonance bifurcation. Furthermore, the existence of chaos is discussed in the sense of Marotto, and a novel chaos control method is proposed for discrete Brusselator model using an extended pole–placement approach. This modified approach is more suitable for codimension-two bifurcation situations. Numerical simulations are used to illustrate the theoretical discussion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Vibration and Control
Journal of Vibration and Control 工程技术-工程:机械
CiteScore
5.20
自引率
17.90%
发文量
336
审稿时长
6 months
期刊介绍: The Journal of Vibration and Control is a peer-reviewed journal of analytical, computational and experimental studies of vibration phenomena and their control. The scope encompasses all linear and nonlinear vibration phenomena and covers topics such as: vibration and control of structures and machinery, signal analysis, aeroelasticity, neural networks, structural control and acoustics, noise and noise control, waves in solids and fluids and shock waves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信