{"title":"二维绝对纠缠断裂子空间","authors":"Jian Yan and Lin Chen","doi":"10.1088/1572-9494/ad43d2","DOIUrl":null,"url":null,"abstract":"Entanglement-breaking (EB) subspaces determine the additivity of entanglement of formation (EOF), which is a long-standing issue in quantum information. We explicitly construct the two-dimensional EB subspaces of any bipartite system, when system dimensions are equal, and we apply the subspaces to construct EB spaces of arbitrary dimensions. We also present partial construction when system dimensions are different. Then, we present the notion and properties of EB subspaces for some systems, and in particular the absolute EB subspaces. We construct some examples of absolute EB subspaces, as well as EB subspaces for some systems by using multiqubit Dicke states.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-dimensional and absolutely entanglement-breaking subspaces\",\"authors\":\"Jian Yan and Lin Chen\",\"doi\":\"10.1088/1572-9494/ad43d2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entanglement-breaking (EB) subspaces determine the additivity of entanglement of formation (EOF), which is a long-standing issue in quantum information. We explicitly construct the two-dimensional EB subspaces of any bipartite system, when system dimensions are equal, and we apply the subspaces to construct EB spaces of arbitrary dimensions. We also present partial construction when system dimensions are different. Then, we present the notion and properties of EB subspaces for some systems, and in particular the absolute EB subspaces. We construct some examples of absolute EB subspaces, as well as EB subspaces for some systems by using multiqubit Dicke states.\",\"PeriodicalId\":10641,\"journal\":{\"name\":\"Communications in Theoretical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1572-9494/ad43d2\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad43d2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Two-dimensional and absolutely entanglement-breaking subspaces
Entanglement-breaking (EB) subspaces determine the additivity of entanglement of formation (EOF), which is a long-standing issue in quantum information. We explicitly construct the two-dimensional EB subspaces of any bipartite system, when system dimensions are equal, and we apply the subspaces to construct EB spaces of arbitrary dimensions. We also present partial construction when system dimensions are different. Then, we present the notion and properties of EB subspaces for some systems, and in particular the absolute EB subspaces. We construct some examples of absolute EB subspaces, as well as EB subspaces for some systems by using multiqubit Dicke states.
期刊介绍:
Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of:
mathematical physics
quantum physics and quantum information
particle physics and quantum field theory
nuclear physics
gravitation theory, astrophysics and cosmology
atomic, molecular, optics (AMO) and plasma physics, chemical physics
statistical physics, soft matter and biophysics
condensed matter theory
others
Certain new interdisciplinary subjects are also incorporated.