传统方法在预测信用评级方面优于生成式 LLM

Felix Drinkall, Janet B. Pierrehumbert, Stefan Zohren
{"title":"传统方法在预测信用评级方面优于生成式 LLM","authors":"Felix Drinkall, Janet B. Pierrehumbert, Stefan Zohren","doi":"arxiv-2407.17624","DOIUrl":null,"url":null,"abstract":"Large Language Models (LLMs) have been shown to perform well for many\ndownstream tasks. Transfer learning can enable LLMs to acquire skills that were\nnot targeted during pre-training. In financial contexts, LLMs can sometimes\nbeat well-established benchmarks. This paper investigates how well LLMs perform\nin the task of forecasting corporate credit ratings. We show that while LLMs\nare very good at encoding textual information, traditional methods are still\nvery competitive when it comes to encoding numeric and multimodal data. For our\ntask, current LLMs perform worse than a more traditional XGBoost architecture\nthat combines fundamental and macroeconomic data with high-density text-based\nembedding features.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traditional Methods Outperform Generative LLMs at Forecasting Credit Ratings\",\"authors\":\"Felix Drinkall, Janet B. Pierrehumbert, Stefan Zohren\",\"doi\":\"arxiv-2407.17624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large Language Models (LLMs) have been shown to perform well for many\\ndownstream tasks. Transfer learning can enable LLMs to acquire skills that were\\nnot targeted during pre-training. In financial contexts, LLMs can sometimes\\nbeat well-established benchmarks. This paper investigates how well LLMs perform\\nin the task of forecasting corporate credit ratings. We show that while LLMs\\nare very good at encoding textual information, traditional methods are still\\nvery competitive when it comes to encoding numeric and multimodal data. For our\\ntask, current LLMs perform worse than a more traditional XGBoost architecture\\nthat combines fundamental and macroeconomic data with high-density text-based\\nembedding features.\",\"PeriodicalId\":501128,\"journal\":{\"name\":\"arXiv - QuantFin - Risk Management\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Risk Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(LLM)在许多下游任务中表现出色。迁移学习可以让 LLMs 掌握在预训练中没有针对的技能。在金融领域,LLM 有时可以超越公认的基准。本文研究了 LLM 在预测企业信用评级任务中的表现。我们发现,虽然 LLM 在编码文本信息方面表现出色,但在编码数字和多模态数据方面,传统方法仍然极具竞争力。在我们的任务中,目前的 LLM 的表现不如更传统的 XGBoost 架构,后者将基本面和宏观经济数据与基于文本的高密度嵌入特征相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traditional Methods Outperform Generative LLMs at Forecasting Credit Ratings
Large Language Models (LLMs) have been shown to perform well for many downstream tasks. Transfer learning can enable LLMs to acquire skills that were not targeted during pre-training. In financial contexts, LLMs can sometimes beat well-established benchmarks. This paper investigates how well LLMs perform in the task of forecasting corporate credit ratings. We show that while LLMs are very good at encoding textual information, traditional methods are still very competitive when it comes to encoding numeric and multimodal data. For our task, current LLMs perform worse than a more traditional XGBoost architecture that combines fundamental and macroeconomic data with high-density text-based embedding features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信