利用电扩散建模绘制亚细胞纳米域的电压分布图

Frédéric Paquin-Lefebvre, David Holcman
{"title":"利用电扩散建模绘制亚细胞纳米域的电压分布图","authors":"Frédéric Paquin-Lefebvre, David Holcman","doi":"arxiv-2407.15697","DOIUrl":null,"url":null,"abstract":"Voltage distribution in sub-cellular micro-domains such as neuronal synapses,\nsmall protrusions or dendritic spines regulates the opening and closing of\nionic channels, energy production and thus cellular homeostasis and\nexcitability. Yet how voltage changes at such a small scale in vivo remains\nchallenging due to the experimental diffraction limit, large signal\nfluctuations and the still limited resolution of fast voltage indicators. Here,\nwe study the voltage distribution in nano-compartments using a computational\napproach based on the Poisson-Nernst-Planck equations for the electro-diffusion\nmotion of ions, where inward and outward fluxes are generated between channels.\nWe report a current-voltage (I-V) logarithmic relationship generalizing Nernst\nlaw that reveals how the local membrane curvature modulates the voltage. We\nfurther find that an influx current penetrating a cellular electrolyte can lead\nto perturbations from tens to hundreds of nanometers deep depending on the\nlocal channels organization. Finally, we show that the neck resistance of\ndendritic spines can be completely shunted by the transporters located on the\nhead boundary, facilitating ionic flow. To conclude, we propose that voltage is\nregulated at a subcellular level by channels organization, membrane curvature\nand narrow passages.","PeriodicalId":501170,"journal":{"name":"arXiv - QuanBio - Subcellular Processes","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voltage mapping in subcellular nanodomains using electro-diffusion modeling\",\"authors\":\"Frédéric Paquin-Lefebvre, David Holcman\",\"doi\":\"arxiv-2407.15697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voltage distribution in sub-cellular micro-domains such as neuronal synapses,\\nsmall protrusions or dendritic spines regulates the opening and closing of\\nionic channels, energy production and thus cellular homeostasis and\\nexcitability. Yet how voltage changes at such a small scale in vivo remains\\nchallenging due to the experimental diffraction limit, large signal\\nfluctuations and the still limited resolution of fast voltage indicators. Here,\\nwe study the voltage distribution in nano-compartments using a computational\\napproach based on the Poisson-Nernst-Planck equations for the electro-diffusion\\nmotion of ions, where inward and outward fluxes are generated between channels.\\nWe report a current-voltage (I-V) logarithmic relationship generalizing Nernst\\nlaw that reveals how the local membrane curvature modulates the voltage. We\\nfurther find that an influx current penetrating a cellular electrolyte can lead\\nto perturbations from tens to hundreds of nanometers deep depending on the\\nlocal channels organization. Finally, we show that the neck resistance of\\ndendritic spines can be completely shunted by the transporters located on the\\nhead boundary, facilitating ionic flow. To conclude, we propose that voltage is\\nregulated at a subcellular level by channels organization, membrane curvature\\nand narrow passages.\",\"PeriodicalId\":501170,\"journal\":{\"name\":\"arXiv - QuanBio - Subcellular Processes\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Subcellular Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.15697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Subcellular Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经元突触、小突起或树突棘等亚细胞微域中的电压分布调节着离子通道的开闭、能量的产生,从而影响细胞的稳态和兴奋性。然而,由于实验衍射极限、信号波动大以及快速电压指标的分辨率仍然有限,体内电压如何在如此小的尺度上发生变化仍然是一个挑战。在这里,我们使用基于泊松-奈恩斯特-普朗克离子电扩散运动方程的计算方法研究了纳米小室中的电压分布,其中通道之间产生了流入和流出的通量。我们进一步发现,穿透细胞电解质的流入电流可导致数十到数百纳米深的扰动,这取决于局部通道的组织。最后,我们发现树突棘的颈部电阻可以被位于棘头边界的转运体完全分流,从而促进离子流动。总之,我们认为电压在亚细胞水平上受通道组织、膜曲率和狭窄通道的调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Voltage mapping in subcellular nanodomains using electro-diffusion modeling
Voltage distribution in sub-cellular micro-domains such as neuronal synapses, small protrusions or dendritic spines regulates the opening and closing of ionic channels, energy production and thus cellular homeostasis and excitability. Yet how voltage changes at such a small scale in vivo remains challenging due to the experimental diffraction limit, large signal fluctuations and the still limited resolution of fast voltage indicators. Here, we study the voltage distribution in nano-compartments using a computational approach based on the Poisson-Nernst-Planck equations for the electro-diffusion motion of ions, where inward and outward fluxes are generated between channels. We report a current-voltage (I-V) logarithmic relationship generalizing Nernst law that reveals how the local membrane curvature modulates the voltage. We further find that an influx current penetrating a cellular electrolyte can lead to perturbations from tens to hundreds of nanometers deep depending on the local channels organization. Finally, we show that the neck resistance of dendritic spines can be completely shunted by the transporters located on the head boundary, facilitating ionic flow. To conclude, we propose that voltage is regulated at a subcellular level by channels organization, membrane curvature and narrow passages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信