用于特征子集选择的量子启发进化算法:全面调查

Yelleti Vivek, Vadlamani Ravi, P. Radha Krishna
{"title":"用于特征子集选择的量子启发进化算法:全面调查","authors":"Yelleti Vivek, Vadlamani Ravi, P. Radha Krishna","doi":"arxiv-2407.17946","DOIUrl":null,"url":null,"abstract":"The clever hybridization of quantum computing concepts and evolutionary\nalgorithms (EAs) resulted in a new field called quantum-inspired evolutionary\nalgorithms (QIEAs). Unlike traditional EAs, QIEAs employ quantum bits to adopt\na probabilistic representation of the state of a feature in a given solution.\nThis unprecedented feature enables them to achieve better diversity and perform\nglobal search, effectively yielding a tradeoff between exploration and\nexploitation. We conducted a comprehensive survey across various publishers and\ngathered 56 papers. We thoroughly analyzed these publications, focusing on the\nnovelty elements and types of heuristics employed by the extant\nquantum-inspired evolutionary algorithms (QIEAs) proposed to solve the feature\nsubset selection (FSS) problem. Importantly, we provided a detailed analysis of\nthe different types of objective functions and popular quantum gates, i.e.,\nrotation gates, employed throughout the literature. Additionally, we suggested\nseveral open research problems to attract the attention of the researchers.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"132 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum-Inspired Evolutionary Algorithms for Feature Subset Selection: A Comprehensive Survey\",\"authors\":\"Yelleti Vivek, Vadlamani Ravi, P. Radha Krishna\",\"doi\":\"arxiv-2407.17946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The clever hybridization of quantum computing concepts and evolutionary\\nalgorithms (EAs) resulted in a new field called quantum-inspired evolutionary\\nalgorithms (QIEAs). Unlike traditional EAs, QIEAs employ quantum bits to adopt\\na probabilistic representation of the state of a feature in a given solution.\\nThis unprecedented feature enables them to achieve better diversity and perform\\nglobal search, effectively yielding a tradeoff between exploration and\\nexploitation. We conducted a comprehensive survey across various publishers and\\ngathered 56 papers. We thoroughly analyzed these publications, focusing on the\\nnovelty elements and types of heuristics employed by the extant\\nquantum-inspired evolutionary algorithms (QIEAs) proposed to solve the feature\\nsubset selection (FSS) problem. Importantly, we provided a detailed analysis of\\nthe different types of objective functions and popular quantum gates, i.e.,\\nrotation gates, employed throughout the literature. Additionally, we suggested\\nseveral open research problems to attract the attention of the researchers.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子计算概念与进化算法(EAA)的巧妙融合,催生了一个名为量子启发进化算法(QIEAs)的新领域。与传统的进化算法不同,量子启发进化算法采用量子比特来对给定解决方案中的特征状态进行概率表示。这种前所未有的特性使其能够实现更好的多样性并进行全局搜索,从而有效地在探索和开发之间取得平衡。我们对不同的出版商进行了全面调查,收集了 56 篇论文。我们对这些论文进行了深入分析,重点研究了现存量子启发进化算法(QIEAs)为解决特征子集选择(FSS)问题而采用的启发式算法的新颖要素和类型。重要的是,我们详细分析了不同类型的目标函数和文献中采用的流行量子门(即旋转门)。此外,我们还提出了几个有待解决的研究问题,以引起研究人员的注意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum-Inspired Evolutionary Algorithms for Feature Subset Selection: A Comprehensive Survey
The clever hybridization of quantum computing concepts and evolutionary algorithms (EAs) resulted in a new field called quantum-inspired evolutionary algorithms (QIEAs). Unlike traditional EAs, QIEAs employ quantum bits to adopt a probabilistic representation of the state of a feature in a given solution. This unprecedented feature enables them to achieve better diversity and perform global search, effectively yielding a tradeoff between exploration and exploitation. We conducted a comprehensive survey across various publishers and gathered 56 papers. We thoroughly analyzed these publications, focusing on the novelty elements and types of heuristics employed by the extant quantum-inspired evolutionary algorithms (QIEAs) proposed to solve the feature subset selection (FSS) problem. Importantly, we provided a detailed analysis of the different types of objective functions and popular quantum gates, i.e., rotation gates, employed throughout the literature. Additionally, we suggested several open research problems to attract the attention of the researchers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信