致密核心囊泡在 elegans 中超扩散运动的异质模型

Anna Gavrilova, Nickolay Korabel, Victoria J. Allan, Sergei Fedotov
{"title":"致密核心囊泡在 elegans 中超扩散运动的异质模型","authors":"Anna Gavrilova, Nickolay Korabel, Victoria J. Allan, Sergei Fedotov","doi":"arxiv-2407.18237","DOIUrl":null,"url":null,"abstract":"Transport of dense core vesicles (DCVs) in neurons is crucial for\ndistributing molecules like neuropeptides and growth factors. We studied the\nexperimental trajectories of dynein-driven directed movement of DCVs in the ALA\nneuron C. elegans over a duration of up to 6 seconds. We analysed the DCV\nmovement in three strains of C. elegans: 1) with normal kinesin-1 function, 2)\nwith reduced function in kinesin light chain 2 (KLC-2), and 3) a null mutation\nin kinesin light chain 1 (KLC-1). We find that DCVs move superdiffusively with\ndisplacement variance $var(x) \\sim t^2$ in all three strains with low reversal\nrates and frequent immobilization of DCVs. The distribution of DCV\ndisplacements fits a beta-binomial distribution with the mean and the variance\nfollowing linear and quadratic growth patterns, respectively. We propose a\nsimple heterogeneous random walk model to explain the observed superdiffusive\nretrograde transport behaviour of DCV movement. This model involves a random\nprobability with the beta density for a DCV to resume its movement or remain in\nthe same position.","PeriodicalId":501170,"journal":{"name":"arXiv - QuanBio - Subcellular Processes","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous model for superdiffusive movement of dense-core vesicles in C. elegans\",\"authors\":\"Anna Gavrilova, Nickolay Korabel, Victoria J. Allan, Sergei Fedotov\",\"doi\":\"arxiv-2407.18237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transport of dense core vesicles (DCVs) in neurons is crucial for\\ndistributing molecules like neuropeptides and growth factors. We studied the\\nexperimental trajectories of dynein-driven directed movement of DCVs in the ALA\\nneuron C. elegans over a duration of up to 6 seconds. We analysed the DCV\\nmovement in three strains of C. elegans: 1) with normal kinesin-1 function, 2)\\nwith reduced function in kinesin light chain 2 (KLC-2), and 3) a null mutation\\nin kinesin light chain 1 (KLC-1). We find that DCVs move superdiffusively with\\ndisplacement variance $var(x) \\\\sim t^2$ in all three strains with low reversal\\nrates and frequent immobilization of DCVs. The distribution of DCV\\ndisplacements fits a beta-binomial distribution with the mean and the variance\\nfollowing linear and quadratic growth patterns, respectively. We propose a\\nsimple heterogeneous random walk model to explain the observed superdiffusive\\nretrograde transport behaviour of DCV movement. This model involves a random\\nprobability with the beta density for a DCV to resume its movement or remain in\\nthe same position.\",\"PeriodicalId\":501170,\"journal\":{\"name\":\"arXiv - QuanBio - Subcellular Processes\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Subcellular Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Subcellular Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经元中致密核心囊泡的运输对于神经肽和生长因子等分子的分布至关重要。我们研究了在持续时间长达 6 秒的 ALAneuron C. elegans 中,由动力蛋白驱动的 DCVs 定向运动的实验轨迹。我们分析了三个品系秀丽隐杆线虫的 DCV 运动:1)驱动蛋白-1 功能正常的品系;2)驱动蛋白轻链 2(KLC-2)功能减弱的品系;3)驱动蛋白轻链 1(KLC-1)突变无效的品系。我们发现,在这三个低反转速率和 DCV 频繁固定的菌株中,DCV 的移动具有超差异,位移方差为 $var(x) \sim t^2$.DCV位移的分布符合β-二叉分布,其均值和方差分别遵循线性和二次增长模式。我们提出了一个简单的异质随机行走模型来解释观测到的DCV运动的超扩散逆向传输行为。该模型涉及一个具有贝塔密度的随机概率,即 DCV 恢复运动或保持原位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterogeneous model for superdiffusive movement of dense-core vesicles in C. elegans
Transport of dense core vesicles (DCVs) in neurons is crucial for distributing molecules like neuropeptides and growth factors. We studied the experimental trajectories of dynein-driven directed movement of DCVs in the ALA neuron C. elegans over a duration of up to 6 seconds. We analysed the DCV movement in three strains of C. elegans: 1) with normal kinesin-1 function, 2) with reduced function in kinesin light chain 2 (KLC-2), and 3) a null mutation in kinesin light chain 1 (KLC-1). We find that DCVs move superdiffusively with displacement variance $var(x) \sim t^2$ in all three strains with low reversal rates and frequent immobilization of DCVs. The distribution of DCV displacements fits a beta-binomial distribution with the mean and the variance following linear and quadratic growth patterns, respectively. We propose a simple heterogeneous random walk model to explain the observed superdiffusive retrograde transport behaviour of DCV movement. This model involves a random probability with the beta density for a DCV to resume its movement or remain in the same position.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信