用碱金属硝酸盐和碳酸盐修饰的氧化镁在中温条件下增强二氧化碳捕获能力和稳定性

IF 2.8 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Shuaipeng Li, Neng Guo, Dongdong Zhu, Dazhan Jiang, Zhenting Chen, Shengwen Chen, Zhiguo Sun, Jifen Wang
{"title":"用碱金属硝酸盐和碳酸盐修饰的氧化镁在中温条件下增强二氧化碳捕获能力和稳定性","authors":"Shuaipeng Li,&nbsp;Neng Guo,&nbsp;Dongdong Zhu,&nbsp;Dazhan Jiang,&nbsp;Zhenting Chen,&nbsp;Shengwen Chen,&nbsp;Zhiguo Sun,&nbsp;Jifen Wang","doi":"10.1002/jctb.7717","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> BACKGROUND</h3>\n \n <p>Magnesium oxide (MgO) is favored for solid-state carbon dioxide (CO2) capture due to its high theoretical adsorption capacity, abundant reserves, low cost, and environmental friendliness. However, its practical application in industry is hindered by low CO2 adsorption capacity under moderate operating conditions. In this work, MgO was modified by a deposition method using LiNO3, NaNO3, KNO3, Na2CO3 and K2CO3 as additives.</p>\n </section>\n \n <section>\n \n <h3> RESULTS</h3>\n \n <p>The study determines optimal ratios within the [(Li, Na, K)x − (Na, K)]y/MgO system, specifically identifying x = 0.5 and y = 0.15 as most effective. At 275 °C under pure CO2 conditions, the adsorption capacity peaks at 0.631 g CO<sub>2</sub> g<sup>−1</sup> adsorbent. Effective regeneration of the adsorbent occurs at 400 °C under 100% N2 for 15 min. Under Integrated Gasification Combined Cycle (IGCC) conditions, the adsorption capacity stabilizes at 0.462 g g<sup>−1</sup> after 20 cycles, representing a 25% decrease from initial capacity.</p>\n </section>\n \n <section>\n \n <h3> CONCLUSION</h3>\n \n <p>Experimental findings demonstrate that the inclusion of alkali metal salts in MgO precursors enhances the adsorbent's microstructure, thereby improving its CO2 capture efficiency and bolstering cycling stability. This research enhances our understanding of the factors influencing CO2 adsorption and cyclic stability in alkali metal salt-promoted MgO, providing valuable insights for further refinement in the formulation and synthesis protocols of MgO-based CO2 adsorbents. © 2024 Society of Chemical Industry (SCI).</p>\n </section>\n </div>","PeriodicalId":15335,"journal":{"name":"Journal of chemical technology and biotechnology","volume":"99 11","pages":"2289-2299"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced CO2 capture and stability of MgO modified with alkali metal nitrates and carbonates at moderate temperature\",\"authors\":\"Shuaipeng Li,&nbsp;Neng Guo,&nbsp;Dongdong Zhu,&nbsp;Dazhan Jiang,&nbsp;Zhenting Chen,&nbsp;Shengwen Chen,&nbsp;Zhiguo Sun,&nbsp;Jifen Wang\",\"doi\":\"10.1002/jctb.7717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> BACKGROUND</h3>\\n \\n <p>Magnesium oxide (MgO) is favored for solid-state carbon dioxide (CO2) capture due to its high theoretical adsorption capacity, abundant reserves, low cost, and environmental friendliness. However, its practical application in industry is hindered by low CO2 adsorption capacity under moderate operating conditions. In this work, MgO was modified by a deposition method using LiNO3, NaNO3, KNO3, Na2CO3 and K2CO3 as additives.</p>\\n </section>\\n \\n <section>\\n \\n <h3> RESULTS</h3>\\n \\n <p>The study determines optimal ratios within the [(Li, Na, K)x − (Na, K)]y/MgO system, specifically identifying x = 0.5 and y = 0.15 as most effective. At 275 °C under pure CO2 conditions, the adsorption capacity peaks at 0.631 g CO<sub>2</sub> g<sup>−1</sup> adsorbent. Effective regeneration of the adsorbent occurs at 400 °C under 100% N2 for 15 min. Under Integrated Gasification Combined Cycle (IGCC) conditions, the adsorption capacity stabilizes at 0.462 g g<sup>−1</sup> after 20 cycles, representing a 25% decrease from initial capacity.</p>\\n </section>\\n \\n <section>\\n \\n <h3> CONCLUSION</h3>\\n \\n <p>Experimental findings demonstrate that the inclusion of alkali metal salts in MgO precursors enhances the adsorbent's microstructure, thereby improving its CO2 capture efficiency and bolstering cycling stability. This research enhances our understanding of the factors influencing CO2 adsorption and cyclic stability in alkali metal salt-promoted MgO, providing valuable insights for further refinement in the formulation and synthesis protocols of MgO-based CO2 adsorbents. © 2024 Society of Chemical Industry (SCI).</p>\\n </section>\\n </div>\",\"PeriodicalId\":15335,\"journal\":{\"name\":\"Journal of chemical technology and biotechnology\",\"volume\":\"99 11\",\"pages\":\"2289-2299\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of chemical technology and biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jctb.7717\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical technology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jctb.7717","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景氧化镁(MgO)因其理论吸附容量高、储量丰富、成本低廉和环境友好而成为固态二氧化碳(CO2)捕集的首选。然而,由于在中等操作条件下的二氧化碳吸附能力较低,阻碍了其在工业中的实际应用。在这项研究中,使用 LiNO3、NaNO3、KNO3、Na2CO3 和 K2CO3 作为添加剂,通过沉积法对氧化镁进行了改性。结果该研究确定了 [(Li, Na, K)x - (Na, K)]y/MgO 体系中的最佳比率,特别是 x = 0.5 和 y = 0.15 最为有效。在 275 °C 的纯二氧化碳条件下,吸附容量在 0.631 g CO2 g-1 吸附剂时达到峰值。吸附剂在 400 ℃、100% N2 条件下 15 分钟后可有效再生。在整体煤气化联合循环 (IGCC) 条件下,吸附容量在 20 次循环后稳定在 0.462 g g-1 的水平,比初始容量下降了 25%。实验结果表明,在氧化镁前驱体中加入碱金属盐可以增强吸附剂的微观结构,从而提高其二氧化碳捕集效率并增强循环稳定性。这项研究加深了我们对影响碱金属盐促进氧化镁吸附二氧化碳和循环稳定性的因素的理解,为进一步完善氧化镁基二氧化碳吸附剂的配方和合成方案提供了宝贵的见解。© 2024 化学工业学会(SCI)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced CO2 capture and stability of MgO modified with alkali metal nitrates and carbonates at moderate temperature

BACKGROUND

Magnesium oxide (MgO) is favored for solid-state carbon dioxide (CO2) capture due to its high theoretical adsorption capacity, abundant reserves, low cost, and environmental friendliness. However, its practical application in industry is hindered by low CO2 adsorption capacity under moderate operating conditions. In this work, MgO was modified by a deposition method using LiNO3, NaNO3, KNO3, Na2CO3 and K2CO3 as additives.

RESULTS

The study determines optimal ratios within the [(Li, Na, K)x − (Na, K)]y/MgO system, specifically identifying x = 0.5 and y = 0.15 as most effective. At 275 °C under pure CO2 conditions, the adsorption capacity peaks at 0.631 g CO2 g−1 adsorbent. Effective regeneration of the adsorbent occurs at 400 °C under 100% N2 for 15 min. Under Integrated Gasification Combined Cycle (IGCC) conditions, the adsorption capacity stabilizes at 0.462 g g−1 after 20 cycles, representing a 25% decrease from initial capacity.

CONCLUSION

Experimental findings demonstrate that the inclusion of alkali metal salts in MgO precursors enhances the adsorbent's microstructure, thereby improving its CO2 capture efficiency and bolstering cycling stability. This research enhances our understanding of the factors influencing CO2 adsorption and cyclic stability in alkali metal salt-promoted MgO, providing valuable insights for further refinement in the formulation and synthesis protocols of MgO-based CO2 adsorbents. © 2024 Society of Chemical Industry (SCI).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
5.90%
发文量
268
审稿时长
1.7 months
期刊介绍: Journal of Chemical Technology and Biotechnology(JCTB) is an international, inter-disciplinary peer-reviewed journal concerned with the application of scientific discoveries and advancements in chemical and biological technology that aim towards economically and environmentally sustainable industrial processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信