{"title":"投影几何、Q$-多项式结构和量子群","authors":"Paul Terwilliger","doi":"arxiv-2407.14964","DOIUrl":null,"url":null,"abstract":"In 2023 we obtained a $Q$-polynomial structure for the projective geometry\n$L_N(q)$. In the present paper, we display a more general $Q$-polynomial\nstructure for $L_N(q)$. Our new $Q$-polynomial structure is defined using a\nfree parameter $\\varphi$ that takes any positive real value. For $\\varphi=1$ we\nrecover the original $Q$-polynomial structure. We interpret the new\n$Q$-polynomial structure using the quantum group $U_{q^{1/2}}(\\mathfrak{sl}_2)$\nin the equitable presentation. We use the new $Q$-polynomial structure to\nobtain analogs of the four split decompositions that appear in the theory of\n$Q$-polynomial distance-regular graphs.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projective geometries, $Q$-polynomial structures, and quantum groups\",\"authors\":\"Paul Terwilliger\",\"doi\":\"arxiv-2407.14964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2023 we obtained a $Q$-polynomial structure for the projective geometry\\n$L_N(q)$. In the present paper, we display a more general $Q$-polynomial\\nstructure for $L_N(q)$. Our new $Q$-polynomial structure is defined using a\\nfree parameter $\\\\varphi$ that takes any positive real value. For $\\\\varphi=1$ we\\nrecover the original $Q$-polynomial structure. We interpret the new\\n$Q$-polynomial structure using the quantum group $U_{q^{1/2}}(\\\\mathfrak{sl}_2)$\\nin the equitable presentation. We use the new $Q$-polynomial structure to\\nobtain analogs of the four split decompositions that appear in the theory of\\n$Q$-polynomial distance-regular graphs.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.14964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Projective geometries, $Q$-polynomial structures, and quantum groups
In 2023 we obtained a $Q$-polynomial structure for the projective geometry
$L_N(q)$. In the present paper, we display a more general $Q$-polynomial
structure for $L_N(q)$. Our new $Q$-polynomial structure is defined using a
free parameter $\varphi$ that takes any positive real value. For $\varphi=1$ we
recover the original $Q$-polynomial structure. We interpret the new
$Q$-polynomial structure using the quantum group $U_{q^{1/2}}(\mathfrak{sl}_2)$
in the equitable presentation. We use the new $Q$-polynomial structure to
obtain analogs of the four split decompositions that appear in the theory of
$Q$-polynomial distance-regular graphs.