科克斯特结的 Khovanov-Rozansky 同调和任意线下路径的 Schröder 多项式

Carmen Caprau, Nicolle González, Matthew Hogancamp, Mikhail Mazin
{"title":"科克斯特结的 Khovanov-Rozansky 同调和任意线下路径的 Schröder 多项式","authors":"Carmen Caprau, Nicolle González, Matthew Hogancamp, Mikhail Mazin","doi":"arxiv-2407.18123","DOIUrl":null,"url":null,"abstract":"We introduce a family of generalized Schr\\\"oder polynomials $S_\\tau(q,t,a)$,\nindexed by triangular partitions $\\tau$ and prove that $S_\\tau(q,t,a)$ agrees\nwith the Poincar\\'e series of the triply graded Khovanov-Rozansky homology of\nthe Coxeter knot $K_\\tau$ associated to $\\tau$. For all integers $m,n,d\\geq 1$\nwith $m,n$ relatively prime, the $(d,mnd+1)$-cable of the torus knot $T(m,n)$\nappears as a special case. It is known that these knots are algebraic, and as a\nresult we obtain a proof of the $q=1$ specialization of the\nOblomkov-Rasmussen-Shende conjecture for these knots. Finally, we show that our\nSchr\\\"oder polynomial computes the hook components in the Schur expansion of\nthe symmetric function appearing in the shuffle theorem under any line, thus\nproving a triangular version of the $(q,t)$-Schr\\\"oder theorem.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Khovanov-Rozansky homology of Coxeter knots and Schröder polynomials for paths under any line\",\"authors\":\"Carmen Caprau, Nicolle González, Matthew Hogancamp, Mikhail Mazin\",\"doi\":\"arxiv-2407.18123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a family of generalized Schr\\\\\\\"oder polynomials $S_\\\\tau(q,t,a)$,\\nindexed by triangular partitions $\\\\tau$ and prove that $S_\\\\tau(q,t,a)$ agrees\\nwith the Poincar\\\\'e series of the triply graded Khovanov-Rozansky homology of\\nthe Coxeter knot $K_\\\\tau$ associated to $\\\\tau$. For all integers $m,n,d\\\\geq 1$\\nwith $m,n$ relatively prime, the $(d,mnd+1)$-cable of the torus knot $T(m,n)$\\nappears as a special case. It is known that these knots are algebraic, and as a\\nresult we obtain a proof of the $q=1$ specialization of the\\nOblomkov-Rasmussen-Shende conjecture for these knots. Finally, we show that our\\nSchr\\\\\\\"oder polynomial computes the hook components in the Schur expansion of\\nthe symmetric function appearing in the shuffle theorem under any line, thus\\nproving a triangular version of the $(q,t)$-Schr\\\\\\\"oder theorem.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了以三角形分区 $\tau$ 为索引的广义施多项式 $S_\tau(q,t,a)$ 系列,并证明了 $S_\tau(q,t,a)$ 与与 $\tau$ 相关的柯克赛特结 $K_\tau$ 的三分级 Khovanov-Rozansky 同调的 Poincar\'e 系列一致。对于所有相对质数 $m,n$ 的整数 $m,n,dgeq 1$,环结 $T(m,n)$的$(d,mnd+1)$缆是一个特例。众所周知,这些结是代数的,因此我们得到了这些结的奥勃洛姆科夫-拉斯穆森-申德猜想的 $q=1$ 特化证明。最后,我们证明了我们的Schr\"oder 多项式可以计算在任意线下出现的洗牌定理中的对称函数的舒尔展开中的钩分量,从而证明了$(q,t)$-Schr\"oder 定理的三角形版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Khovanov-Rozansky homology of Coxeter knots and Schröder polynomials for paths under any line
We introduce a family of generalized Schr\"oder polynomials $S_\tau(q,t,a)$, indexed by triangular partitions $\tau$ and prove that $S_\tau(q,t,a)$ agrees with the Poincar\'e series of the triply graded Khovanov-Rozansky homology of the Coxeter knot $K_\tau$ associated to $\tau$. For all integers $m,n,d\geq 1$ with $m,n$ relatively prime, the $(d,mnd+1)$-cable of the torus knot $T(m,n)$ appears as a special case. It is known that these knots are algebraic, and as a result we obtain a proof of the $q=1$ specialization of the Oblomkov-Rasmussen-Shende conjecture for these knots. Finally, we show that our Schr\"oder polynomial computes the hook components in the Schur expansion of the symmetric function appearing in the shuffle theorem under any line, thus proving a triangular version of the $(q,t)$-Schr\"oder theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信