{"title":"源等式的代数公式和几何推导","authors":"Kohei Motegi and Ryo Ohkawa","doi":"10.1088/1751-8121/ad62c8","DOIUrl":null,"url":null,"abstract":"Source identities are fundamental identities between multivariable special functions. We give a geometric derivation of rational and trigonometric source identities. We also give a systematic derivation and extension of various determinant representations for source functions which appeared in previous literature as well as introducing the elliptic version of the determinants, and obtain identities between determinants. We also show several symmetrization formulas for the rational version.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic formulas and geometric derivation of source identities\",\"authors\":\"Kohei Motegi and Ryo Ohkawa\",\"doi\":\"10.1088/1751-8121/ad62c8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Source identities are fundamental identities between multivariable special functions. We give a geometric derivation of rational and trigonometric source identities. We also give a systematic derivation and extension of various determinant representations for source functions which appeared in previous literature as well as introducing the elliptic version of the determinants, and obtain identities between determinants. We also show several symmetrization formulas for the rational version.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad62c8\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad62c8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Algebraic formulas and geometric derivation of source identities
Source identities are fundamental identities between multivariable special functions. We give a geometric derivation of rational and trigonometric source identities. We also give a systematic derivation and extension of various determinant representations for source functions which appeared in previous literature as well as introducing the elliptic version of the determinants, and obtain identities between determinants. We also show several symmetrization formulas for the rational version.
期刊介绍:
Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.