Niels Obel, Matthew P Fox, Malte M Tetens, Lars Pedersen, Tyra Grove Krause, Henrik Ullum, Henrik Toft Sørensen
{"title":"SARS-CoV-2 疫苗有效性观察研究中的混杂因素和阴性对照方法:基于丹麦全国人口的健康登记研究","authors":"Niels Obel, Matthew P Fox, Malte M Tetens, Lars Pedersen, Tyra Grove Krause, Henrik Ullum, Henrik Toft Sørensen","doi":"10.2147/clep.s468572","DOIUrl":null,"url":null,"abstract":"<strong>Background:</strong> Observational studies of SARS-CoV-2 vaccine effectiveness are prone to confounding, which can be illustrated using negative control methods.<br/><strong>Methods:</strong> Nationwide population-based cohort study including two cohorts of Danish residents 60– 90 years of age matched 1:1 on age and sex: A vaccinated and a non-vaccinated cohort, including 61052 SARS-CoV-2 vaccinated individuals between 1 March and 1 July 2021 and 61052 individuals not vaccinated preceding 1 July 2021. From these two cohorts, we constructed negative control cohorts of individuals diagnosed with SARS-CoV-2 infection or acute myocardial infarction, stroke, cancer, low energy fracture, or head-trauma. Outcomes were SARS-CoV-2 infection, negative control outcomes (eg, mammography, prostate biopsy, operation for cataract, malignant melanoma, examination of eye and ear), and death. We used Cox regression to calculate adjusted incidence and mortality rate ratios (aIRR and aMRR).<br/><strong>Results:</strong> Risks of SARS-CoV2 infection and all negative control outcomes were elevated in the vaccinated population, ranging from an aIRR of 1.15 (95% CI: 1.09– 1.21) for eye examinations to 3.05 (95% CI: 2.24– 4.14) for malignant melanoma. Conversely, the risk of death in the SARS-CoV-2 infected cohort and in all negative control cohorts was lower in vaccinated individuals, ranging from an aMRR of 0.23 (95% CI: 0.19– 0.26) after SARS-CoV-2 infection to 0.50 (95% CI: 0.37– 0.67) after stroke.<br/><strong>Conclusion:</strong> Our findings indicate that observational studies of SARS-CoV-2 vaccine effectiveness may be subject to substantial confounding. Therefore, randomized trials are essential to establish vaccine efficacy after the emergence of new SARS-CoV-2 variants and the rollout of multiple booster vaccines.<br/><br/><strong>Plain Language Summary:</strong> <strong>Why was this study done</strong>: After the emergence of new SARS-CoV-2 variants and the rollout of multiple booster SARS-CoV-2 vaccines, the impact of vaccination on risk of SARS-CoV-2 infection and death after the infection has mainly been explored in observational studies. We used negative control methods to investigate whether confounding affects the results of observational SARS-CoV-2 vaccine effectiveness studies.<br/><strong>Findings</strong>: We used Danish registry data obtained during the SARS-CoV-2 vaccine roll-out to conduct a nationwide, matched population-based cohort study of Danish residents 60– 90 years in which we compared vaccinated individuals with non-vaccinated individuals. Compared with unvaccinated individuals, vaccinated individuals had increased risks of SARS-CoV2 infection but also had increased risks of all negative control outcomes (mammography, prostate biopsy, operation for cataract, malignant melanoma, examination of eye and ear). The risk of death after SARS-CoV2 infection was lower in the vaccinated cohort, as was the risk of death after acute myocardial infarction, stroke, cancer, low energy fracture, and head-trauma.<br/><strong>Meaning</strong>: The negative control methods indicate that observational studies of SARS-CoV-2 vaccine effectiveness may be prone to substantial confounding which may impact the observed associations. This bias may both lead to underestimation of vaccine effectiveness (increased risk of SARS-CoV2 infection among vaccinated individuals) and overestimation of the vaccine effectiveness (decreased risk of death after of SARS-CoV2 infection among vaccinated individuals). Our results highlight the need for randomized vaccine efficacy studies after the emergence of new SARS-CoV-2 variants and the rollout of multiple booster vaccines.<br/><br/>","PeriodicalId":10362,"journal":{"name":"Clinical Epidemiology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confounding and Negative Control Methods in Observational Study of SARS-CoV-2 Vaccine Effectiveness: A Nationwide, Population-Based Danish Health Registry Study\",\"authors\":\"Niels Obel, Matthew P Fox, Malte M Tetens, Lars Pedersen, Tyra Grove Krause, Henrik Ullum, Henrik Toft Sørensen\",\"doi\":\"10.2147/clep.s468572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Background:</strong> Observational studies of SARS-CoV-2 vaccine effectiveness are prone to confounding, which can be illustrated using negative control methods.<br/><strong>Methods:</strong> Nationwide population-based cohort study including two cohorts of Danish residents 60– 90 years of age matched 1:1 on age and sex: A vaccinated and a non-vaccinated cohort, including 61052 SARS-CoV-2 vaccinated individuals between 1 March and 1 July 2021 and 61052 individuals not vaccinated preceding 1 July 2021. From these two cohorts, we constructed negative control cohorts of individuals diagnosed with SARS-CoV-2 infection or acute myocardial infarction, stroke, cancer, low energy fracture, or head-trauma. Outcomes were SARS-CoV-2 infection, negative control outcomes (eg, mammography, prostate biopsy, operation for cataract, malignant melanoma, examination of eye and ear), and death. We used Cox regression to calculate adjusted incidence and mortality rate ratios (aIRR and aMRR).<br/><strong>Results:</strong> Risks of SARS-CoV2 infection and all negative control outcomes were elevated in the vaccinated population, ranging from an aIRR of 1.15 (95% CI: 1.09– 1.21) for eye examinations to 3.05 (95% CI: 2.24– 4.14) for malignant melanoma. Conversely, the risk of death in the SARS-CoV-2 infected cohort and in all negative control cohorts was lower in vaccinated individuals, ranging from an aMRR of 0.23 (95% CI: 0.19– 0.26) after SARS-CoV-2 infection to 0.50 (95% CI: 0.37– 0.67) after stroke.<br/><strong>Conclusion:</strong> Our findings indicate that observational studies of SARS-CoV-2 vaccine effectiveness may be subject to substantial confounding. Therefore, randomized trials are essential to establish vaccine efficacy after the emergence of new SARS-CoV-2 variants and the rollout of multiple booster vaccines.<br/><br/><strong>Plain Language Summary:</strong> <strong>Why was this study done</strong>: After the emergence of new SARS-CoV-2 variants and the rollout of multiple booster SARS-CoV-2 vaccines, the impact of vaccination on risk of SARS-CoV-2 infection and death after the infection has mainly been explored in observational studies. We used negative control methods to investigate whether confounding affects the results of observational SARS-CoV-2 vaccine effectiveness studies.<br/><strong>Findings</strong>: We used Danish registry data obtained during the SARS-CoV-2 vaccine roll-out to conduct a nationwide, matched population-based cohort study of Danish residents 60– 90 years in which we compared vaccinated individuals with non-vaccinated individuals. Compared with unvaccinated individuals, vaccinated individuals had increased risks of SARS-CoV2 infection but also had increased risks of all negative control outcomes (mammography, prostate biopsy, operation for cataract, malignant melanoma, examination of eye and ear). The risk of death after SARS-CoV2 infection was lower in the vaccinated cohort, as was the risk of death after acute myocardial infarction, stroke, cancer, low energy fracture, and head-trauma.<br/><strong>Meaning</strong>: The negative control methods indicate that observational studies of SARS-CoV-2 vaccine effectiveness may be prone to substantial confounding which may impact the observed associations. This bias may both lead to underestimation of vaccine effectiveness (increased risk of SARS-CoV2 infection among vaccinated individuals) and overestimation of the vaccine effectiveness (decreased risk of death after of SARS-CoV2 infection among vaccinated individuals). Our results highlight the need for randomized vaccine efficacy studies after the emergence of new SARS-CoV-2 variants and the rollout of multiple booster vaccines.<br/><br/>\",\"PeriodicalId\":10362,\"journal\":{\"name\":\"Clinical Epidemiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/clep.s468572\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/clep.s468572","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Confounding and Negative Control Methods in Observational Study of SARS-CoV-2 Vaccine Effectiveness: A Nationwide, Population-Based Danish Health Registry Study
Background: Observational studies of SARS-CoV-2 vaccine effectiveness are prone to confounding, which can be illustrated using negative control methods. Methods: Nationwide population-based cohort study including two cohorts of Danish residents 60– 90 years of age matched 1:1 on age and sex: A vaccinated and a non-vaccinated cohort, including 61052 SARS-CoV-2 vaccinated individuals between 1 March and 1 July 2021 and 61052 individuals not vaccinated preceding 1 July 2021. From these two cohorts, we constructed negative control cohorts of individuals diagnosed with SARS-CoV-2 infection or acute myocardial infarction, stroke, cancer, low energy fracture, or head-trauma. Outcomes were SARS-CoV-2 infection, negative control outcomes (eg, mammography, prostate biopsy, operation for cataract, malignant melanoma, examination of eye and ear), and death. We used Cox regression to calculate adjusted incidence and mortality rate ratios (aIRR and aMRR). Results: Risks of SARS-CoV2 infection and all negative control outcomes were elevated in the vaccinated population, ranging from an aIRR of 1.15 (95% CI: 1.09– 1.21) for eye examinations to 3.05 (95% CI: 2.24– 4.14) for malignant melanoma. Conversely, the risk of death in the SARS-CoV-2 infected cohort and in all negative control cohorts was lower in vaccinated individuals, ranging from an aMRR of 0.23 (95% CI: 0.19– 0.26) after SARS-CoV-2 infection to 0.50 (95% CI: 0.37– 0.67) after stroke. Conclusion: Our findings indicate that observational studies of SARS-CoV-2 vaccine effectiveness may be subject to substantial confounding. Therefore, randomized trials are essential to establish vaccine efficacy after the emergence of new SARS-CoV-2 variants and the rollout of multiple booster vaccines.
Plain Language Summary:Why was this study done: After the emergence of new SARS-CoV-2 variants and the rollout of multiple booster SARS-CoV-2 vaccines, the impact of vaccination on risk of SARS-CoV-2 infection and death after the infection has mainly been explored in observational studies. We used negative control methods to investigate whether confounding affects the results of observational SARS-CoV-2 vaccine effectiveness studies. Findings: We used Danish registry data obtained during the SARS-CoV-2 vaccine roll-out to conduct a nationwide, matched population-based cohort study of Danish residents 60– 90 years in which we compared vaccinated individuals with non-vaccinated individuals. Compared with unvaccinated individuals, vaccinated individuals had increased risks of SARS-CoV2 infection but also had increased risks of all negative control outcomes (mammography, prostate biopsy, operation for cataract, malignant melanoma, examination of eye and ear). The risk of death after SARS-CoV2 infection was lower in the vaccinated cohort, as was the risk of death after acute myocardial infarction, stroke, cancer, low energy fracture, and head-trauma. Meaning: The negative control methods indicate that observational studies of SARS-CoV-2 vaccine effectiveness may be prone to substantial confounding which may impact the observed associations. This bias may both lead to underestimation of vaccine effectiveness (increased risk of SARS-CoV2 infection among vaccinated individuals) and overestimation of the vaccine effectiveness (decreased risk of death after of SARS-CoV2 infection among vaccinated individuals). Our results highlight the need for randomized vaccine efficacy studies after the emergence of new SARS-CoV-2 variants and the rollout of multiple booster vaccines.
期刊介绍:
Clinical Epidemiology is an international, peer reviewed, open access journal. Clinical Epidemiology focuses on the application of epidemiological principles and questions relating to patients and clinical care in terms of prevention, diagnosis, prognosis, and treatment.
Clinical Epidemiology welcomes papers covering these topics in form of original research and systematic reviews.
Clinical Epidemiology has a special interest in international electronic medical patient records and other routine health care data, especially as applied to safety of medical interventions, clinical utility of diagnostic procedures, understanding short- and long-term clinical course of diseases, clinical epidemiological and biostatistical methods, and systematic reviews.
When considering submission of a paper utilizing publicly-available data, authors should ensure that such studies add significantly to the body of knowledge and that they use appropriate validated methods for identifying health outcomes.
The journal has launched special series describing existing data sources for clinical epidemiology, international health care systems and validation studies of algorithms based on databases and registries.