构建有限域上具有特定循环结构的置换多项式

Anitha G, P. Vanchinathan
{"title":"构建有限域上具有特定循环结构的置换多项式","authors":"Anitha G, P. Vanchinathan","doi":"10.1007/s13226-024-00668-3","DOIUrl":null,"url":null,"abstract":"<p>For a finite field of odd order <i>q</i>, and a divisor <i>n</i> of <span>\\(q-1\\)</span>, we construct families of permutation polynomials of <i>n</i> terms with one fixed-point (namely zero) and remaining elements being permuted as disjoint cycles of same length. Our polynomials will all be of same format: that is the degree, the terms are identical. For our polynomials their compositional inverses are also polynomials in the same format and are easy to write down. The special cases of <span>\\(n=2,3\\)</span> give very simple families of permutation binomials and trinomials. For example, in the field of 121 elements our methods provide 4080 permutation trinomials all decomposing into three disjoint cycles of length 40 along with a unique fixed point.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of permutation polynomials with specific cycle structure over finite fields\",\"authors\":\"Anitha G, P. Vanchinathan\",\"doi\":\"10.1007/s13226-024-00668-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a finite field of odd order <i>q</i>, and a divisor <i>n</i> of <span>\\\\(q-1\\\\)</span>, we construct families of permutation polynomials of <i>n</i> terms with one fixed-point (namely zero) and remaining elements being permuted as disjoint cycles of same length. Our polynomials will all be of same format: that is the degree, the terms are identical. For our polynomials their compositional inverses are also polynomials in the same format and are easy to write down. The special cases of <span>\\\\(n=2,3\\\\)</span> give very simple families of permutation binomials and trinomials. For example, in the field of 121 elements our methods provide 4080 permutation trinomials all decomposing into three disjoint cycles of length 40 along with a unique fixed point.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00668-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00668-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于奇数阶 q 的有限域和(q-1\)的除数 n,我们构建了 n 项的置换多项式族,其中有一个定点(即零),其余元素被置换成相同长度的不相邻循环。我们的多项式都将具有相同的格式:即度数、项都相同。对于我们的多项式来说,它们的构成逆也是相同格式的多项式,而且很容易写出来。\(n=2,3\)的特例给出了非常简单的置换二项式和三项式族。例如,在有 121 个元素的域中,我们的方法提供了 4080 个置换三项式,它们都分解成长度为 40 的三个互不相邻的循环,并有一个唯一的固定点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of permutation polynomials with specific cycle structure over finite fields

For a finite field of odd order q, and a divisor n of \(q-1\), we construct families of permutation polynomials of n terms with one fixed-point (namely zero) and remaining elements being permuted as disjoint cycles of same length. Our polynomials will all be of same format: that is the degree, the terms are identical. For our polynomials their compositional inverses are also polynomials in the same format and are easy to write down. The special cases of \(n=2,3\) give very simple families of permutation binomials and trinomials. For example, in the field of 121 elements our methods provide 4080 permutation trinomials all decomposing into three disjoint cycles of length 40 along with a unique fixed point.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信