{"title":"非线性彩色噪声驱动的非自治分数随机 p-Laplacian 方程随机吸引子的稳定性","authors":"Xuping Zhang, Ru Tian, Donal O’Regan","doi":"10.1007/s00028-024-00993-4","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to establish the stability of pullback random attractors of non-autonomous fractional stochastic <i>p</i>-Laplacian equations driven by nonlinear colored noise. In order to overcome the difficulties caused by lack of compact Sobolev embedding on unbounded domains and weak dissipative structure of the equation, we first prove the existence, uniqueness and backward compactness of a special kind of pullback random attractor using the method of spectral decomposition in bounded domains and the uniform tail-estimates of solutions outside bounded domains over the infinite time interval. The measurability of this class of attractors is established by proving that the two classes of defined attractors are equal with respect to two different universes. Finally, the stability of the attractors is investigated by assuming that the time-dependent external forcing term converges to the time-independent external force as the time parameter tends to negative infinity.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"15 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of random attractors for non-autonomous fractional stochastic p-Laplacian equations driven by nonlinear colored noise\",\"authors\":\"Xuping Zhang, Ru Tian, Donal O’Regan\",\"doi\":\"10.1007/s00028-024-00993-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this paper is to establish the stability of pullback random attractors of non-autonomous fractional stochastic <i>p</i>-Laplacian equations driven by nonlinear colored noise. In order to overcome the difficulties caused by lack of compact Sobolev embedding on unbounded domains and weak dissipative structure of the equation, we first prove the existence, uniqueness and backward compactness of a special kind of pullback random attractor using the method of spectral decomposition in bounded domains and the uniform tail-estimates of solutions outside bounded domains over the infinite time interval. The measurability of this class of attractors is established by proving that the two classes of defined attractors are equal with respect to two different universes. Finally, the stability of the attractors is investigated by assuming that the time-dependent external forcing term converges to the time-independent external force as the time parameter tends to negative infinity.</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-024-00993-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00993-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Stability of random attractors for non-autonomous fractional stochastic p-Laplacian equations driven by nonlinear colored noise
The aim of this paper is to establish the stability of pullback random attractors of non-autonomous fractional stochastic p-Laplacian equations driven by nonlinear colored noise. In order to overcome the difficulties caused by lack of compact Sobolev embedding on unbounded domains and weak dissipative structure of the equation, we first prove the existence, uniqueness and backward compactness of a special kind of pullback random attractor using the method of spectral decomposition in bounded domains and the uniform tail-estimates of solutions outside bounded domains over the infinite time interval. The measurability of this class of attractors is established by proving that the two classes of defined attractors are equal with respect to two different universes. Finally, the stability of the attractors is investigated by assuming that the time-dependent external forcing term converges to the time-independent external force as the time parameter tends to negative infinity.
期刊介绍:
The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications.
Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field.
Particular topics covered by the journal are:
Linear and Nonlinear Semigroups
Parabolic and Hyperbolic Partial Differential Equations
Reaction Diffusion Equations
Deterministic and Stochastic Control Systems
Transport and Population Equations
Volterra Equations
Delay Equations
Stochastic Processes and Dirichlet Forms
Maximal Regularity and Functional Calculi
Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations
Evolution Equations in Mathematical Physics
Elliptic Operators