Y. A. Kurdyaeva, F. S. Bessarab, O. P. Borchevkina, M. V. Klimenko
{"title":"2017 年 5 月 27-29 日地磁风暴期间对流层源大气波对电离层影响的多模型研究","authors":"Y. A. Kurdyaeva, F. S. Bessarab, O. P. Borchevkina, M. V. Klimenko","doi":"10.1134/S1990793124700295","DOIUrl":null,"url":null,"abstract":"<p>The influence of atmospheric waves generated by a tropospheric convective source on the state of the upper atmosphere and ionosphere during the recovery phase of the geomagnetic storm on May 27–28, 2017 is studied. A new approach to accounting for atmospheric waves generated by tropospheric convective sources in large-scale atmospheric models without using wave parameterization is proposed and implemented. The developed approach makes it possible to comprehensively study the effects generated by atmospheric waves against the background of various geophysical events, including geomagnetic storms. The multimodel study shows that the proposed approach allows us to reproduce perturbations of the critical frequency of the ionosphere’s ionospheric F2 layer caused by the propagation of atmospheric waves generated by a tropospheric meteorological source. It is shown that the inclusion of a heat inflow source simulating the propagation of atmospheric waves from the lower atmosphere in the global model enhances the effects of a geomagnetic storm, which manifests itself as an additional decrease in the critical frequency of the F2 layer, which can reach 7% of the absolute values.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"18 3","pages":"852 - 862"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodel Study of the Influence of Atmospheric Waves from a Tropospheric Source on the Ionosphere During a Geomagnetic Storm on May 27–29, 2017\",\"authors\":\"Y. A. Kurdyaeva, F. S. Bessarab, O. P. Borchevkina, M. V. Klimenko\",\"doi\":\"10.1134/S1990793124700295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The influence of atmospheric waves generated by a tropospheric convective source on the state of the upper atmosphere and ionosphere during the recovery phase of the geomagnetic storm on May 27–28, 2017 is studied. A new approach to accounting for atmospheric waves generated by tropospheric convective sources in large-scale atmospheric models without using wave parameterization is proposed and implemented. The developed approach makes it possible to comprehensively study the effects generated by atmospheric waves against the background of various geophysical events, including geomagnetic storms. The multimodel study shows that the proposed approach allows us to reproduce perturbations of the critical frequency of the ionosphere’s ionospheric F2 layer caused by the propagation of atmospheric waves generated by a tropospheric meteorological source. It is shown that the inclusion of a heat inflow source simulating the propagation of atmospheric waves from the lower atmosphere in the global model enhances the effects of a geomagnetic storm, which manifests itself as an additional decrease in the critical frequency of the F2 layer, which can reach 7% of the absolute values.</p>\",\"PeriodicalId\":768,\"journal\":{\"name\":\"Russian Journal of Physical Chemistry B\",\"volume\":\"18 3\",\"pages\":\"852 - 862\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Physical Chemistry B\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990793124700295\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry B","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1990793124700295","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Multimodel Study of the Influence of Atmospheric Waves from a Tropospheric Source on the Ionosphere During a Geomagnetic Storm on May 27–29, 2017
The influence of atmospheric waves generated by a tropospheric convective source on the state of the upper atmosphere and ionosphere during the recovery phase of the geomagnetic storm on May 27–28, 2017 is studied. A new approach to accounting for atmospheric waves generated by tropospheric convective sources in large-scale atmospheric models without using wave parameterization is proposed and implemented. The developed approach makes it possible to comprehensively study the effects generated by atmospheric waves against the background of various geophysical events, including geomagnetic storms. The multimodel study shows that the proposed approach allows us to reproduce perturbations of the critical frequency of the ionosphere’s ionospheric F2 layer caused by the propagation of atmospheric waves generated by a tropospheric meteorological source. It is shown that the inclusion of a heat inflow source simulating the propagation of atmospheric waves from the lower atmosphere in the global model enhances the effects of a geomagnetic storm, which manifests itself as an additional decrease in the critical frequency of the F2 layer, which can reach 7% of the absolute values.
期刊介绍:
Russian Journal of Physical Chemistry B: Focus on Physics is a journal that publishes studies in the following areas: elementary physical and chemical processes; structure of chemical compounds, reactivity, effect of external field and environment on chemical transformations; molecular dynamics and molecular organization; dynamics and kinetics of photoand radiation-induced processes; mechanism of chemical reactions in gas and condensed phases and at interfaces; chain and thermal processes of ignition, combustion and detonation in gases, two-phase and condensed systems; shock waves; new physical methods of examining chemical reactions; and biological processes in chemical physics.