{"title":"基于计算风工程的塔式直升飞机干扰效应分析与研究","authors":"Kashif Ali, Song Jifeng","doi":"10.3103/S0003701X23601527","DOIUrl":null,"url":null,"abstract":"<p>Heliostats serve as essential light-collecting components within tower solar thermal power stations. These power stations are typically located in windy and sandy environments, the strong winds can lead to deflection, deformation, or even collapse of heliostats, significantly impacting the light-gathering efficiency of the entire power generation system and causing substantial economic losses. Therefore, understanding the influence of wind on heliostats and their surroundings is crucial for designing wind-resistant heliostat structures, optimizing their layout, and enhancing power generation efficiency. This research employs computational wind engineering (CWE) for the study of wind-related phenomena in heliostat arrays under varying spatial conditions. This research employs three mathematical models for inlet boundary conditions in wind engineering, distinct from empirical expressions. Corresponding user-defined function (UDF) programs simulate conditions consistent with wind tunnel tests. The analysis aids in determining entrance boundary conditions tailored to the geomorphological characteristics of heliostats, laying the foundation for subsequent 3D numerical wind tunnel construction and simulation. It calculates wind load coefficients under various spatial positions, determining the maximum force coefficients for each component and identifying optimal deflection positions under adverse wind conditions. Based on heliostat structure dimensions and radiation grid layouts, the research calculates radial and circumferential distances that ensure no mechanical collisions or shielding losses occur between adjacent heliostats. This information aids in determining optimal heliostat spacing.</p>","PeriodicalId":475,"journal":{"name":"Applied Solar Energy","volume":null,"pages":null},"PeriodicalIF":1.2040,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and Study on the Interference Effect of Tower Heliostats Based on Computational Wind Engineering\",\"authors\":\"Kashif Ali, Song Jifeng\",\"doi\":\"10.3103/S0003701X23601527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heliostats serve as essential light-collecting components within tower solar thermal power stations. These power stations are typically located in windy and sandy environments, the strong winds can lead to deflection, deformation, or even collapse of heliostats, significantly impacting the light-gathering efficiency of the entire power generation system and causing substantial economic losses. Therefore, understanding the influence of wind on heliostats and their surroundings is crucial for designing wind-resistant heliostat structures, optimizing their layout, and enhancing power generation efficiency. This research employs computational wind engineering (CWE) for the study of wind-related phenomena in heliostat arrays under varying spatial conditions. This research employs three mathematical models for inlet boundary conditions in wind engineering, distinct from empirical expressions. Corresponding user-defined function (UDF) programs simulate conditions consistent with wind tunnel tests. The analysis aids in determining entrance boundary conditions tailored to the geomorphological characteristics of heliostats, laying the foundation for subsequent 3D numerical wind tunnel construction and simulation. It calculates wind load coefficients under various spatial positions, determining the maximum force coefficients for each component and identifying optimal deflection positions under adverse wind conditions. Based on heliostat structure dimensions and radiation grid layouts, the research calculates radial and circumferential distances that ensure no mechanical collisions or shielding losses occur between adjacent heliostats. This information aids in determining optimal heliostat spacing.</p>\",\"PeriodicalId\":475,\"journal\":{\"name\":\"Applied Solar Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2040,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Solar Energy\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0003701X23601527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Solar Energy","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.3103/S0003701X23601527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Analysis and Study on the Interference Effect of Tower Heliostats Based on Computational Wind Engineering
Heliostats serve as essential light-collecting components within tower solar thermal power stations. These power stations are typically located in windy and sandy environments, the strong winds can lead to deflection, deformation, or even collapse of heliostats, significantly impacting the light-gathering efficiency of the entire power generation system and causing substantial economic losses. Therefore, understanding the influence of wind on heliostats and their surroundings is crucial for designing wind-resistant heliostat structures, optimizing their layout, and enhancing power generation efficiency. This research employs computational wind engineering (CWE) for the study of wind-related phenomena in heliostat arrays under varying spatial conditions. This research employs three mathematical models for inlet boundary conditions in wind engineering, distinct from empirical expressions. Corresponding user-defined function (UDF) programs simulate conditions consistent with wind tunnel tests. The analysis aids in determining entrance boundary conditions tailored to the geomorphological characteristics of heliostats, laying the foundation for subsequent 3D numerical wind tunnel construction and simulation. It calculates wind load coefficients under various spatial positions, determining the maximum force coefficients for each component and identifying optimal deflection positions under adverse wind conditions. Based on heliostat structure dimensions and radiation grid layouts, the research calculates radial and circumferential distances that ensure no mechanical collisions or shielding losses occur between adjacent heliostats. This information aids in determining optimal heliostat spacing.
期刊介绍:
Applied Solar Energy is an international peer reviewed journal covers various topics of research and development studies on solar energy conversion and use: photovoltaics, thermophotovoltaics, water heaters, passive solar heating systems, drying of agricultural production, water desalination, solar radiation condensers, operation of Big Solar Oven, combined use of solar energy and traditional energy sources, new semiconductors for solar cells and thermophotovoltaic system photocells, engines for autonomous solar stations.