{"title":"关于 CdS/CdTe 薄膜太阳能电池与超级电容器集成的研究","authors":"J. R. Sofia, K. S. Joseph Wilson","doi":"10.3103/S0003701X23601916","DOIUrl":null,"url":null,"abstract":"<p>Photo-supercapacitors (PSCs) are independent energy sources serving the cause of simultaneous photoelectric conversion and energy storage. Insights on the working of PSCs are inevitable to realize higher efficiencies in these integrated systems and so theoretical analyses are highly required. A theoretical study on PSC comprising a CdS/CdTe thin film solar cell with a supercapacitor is carried out. The device physics of the solar cell is characterized by Sah-Noyce-Shockley (SNS) theory and the Electrical Circuit Model is used to model the working of supercapacitor. The temporal evolution of the PSC charging is theoretically simulated by the differential equation of the integrated circuit, solved using numerical methods. The effect of solar cell factors on the PSC charging is studied. With the optimized solar cell parameters, the maximum value of Energy Conversion and Storage Efficiency (ECSE<sub>max</sub> %) of about 8.8% can be achieved with the proposed PSC.</p>","PeriodicalId":475,"journal":{"name":"Applied Solar Energy","volume":null,"pages":null},"PeriodicalIF":1.2040,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations on Integration of CdS/CdTe Thin Film Solar Cell with Supercapacitor\",\"authors\":\"J. R. Sofia, K. S. Joseph Wilson\",\"doi\":\"10.3103/S0003701X23601916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photo-supercapacitors (PSCs) are independent energy sources serving the cause of simultaneous photoelectric conversion and energy storage. Insights on the working of PSCs are inevitable to realize higher efficiencies in these integrated systems and so theoretical analyses are highly required. A theoretical study on PSC comprising a CdS/CdTe thin film solar cell with a supercapacitor is carried out. The device physics of the solar cell is characterized by Sah-Noyce-Shockley (SNS) theory and the Electrical Circuit Model is used to model the working of supercapacitor. The temporal evolution of the PSC charging is theoretically simulated by the differential equation of the integrated circuit, solved using numerical methods. The effect of solar cell factors on the PSC charging is studied. With the optimized solar cell parameters, the maximum value of Energy Conversion and Storage Efficiency (ECSE<sub>max</sub> %) of about 8.8% can be achieved with the proposed PSC.</p>\",\"PeriodicalId\":475,\"journal\":{\"name\":\"Applied Solar Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2040,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Solar Energy\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0003701X23601916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Solar Energy","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.3103/S0003701X23601916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Investigations on Integration of CdS/CdTe Thin Film Solar Cell with Supercapacitor
Photo-supercapacitors (PSCs) are independent energy sources serving the cause of simultaneous photoelectric conversion and energy storage. Insights on the working of PSCs are inevitable to realize higher efficiencies in these integrated systems and so theoretical analyses are highly required. A theoretical study on PSC comprising a CdS/CdTe thin film solar cell with a supercapacitor is carried out. The device physics of the solar cell is characterized by Sah-Noyce-Shockley (SNS) theory and the Electrical Circuit Model is used to model the working of supercapacitor. The temporal evolution of the PSC charging is theoretically simulated by the differential equation of the integrated circuit, solved using numerical methods. The effect of solar cell factors on the PSC charging is studied. With the optimized solar cell parameters, the maximum value of Energy Conversion and Storage Efficiency (ECSEmax %) of about 8.8% can be achieved with the proposed PSC.
期刊介绍:
Applied Solar Energy is an international peer reviewed journal covers various topics of research and development studies on solar energy conversion and use: photovoltaics, thermophotovoltaics, water heaters, passive solar heating systems, drying of agricultural production, water desalination, solar radiation condensers, operation of Big Solar Oven, combined use of solar energy and traditional energy sources, new semiconductors for solar cells and thermophotovoltaic system photocells, engines for autonomous solar stations.