Asliddin Komilov, Oybek Abdulkhaev, Yusuf Nasrullayev, Baxodir Abdurasulov, Bahodir Abdukahhorov
{"title":"使用未经过滤的光源时尽量减少光伏特性分析中的误差","authors":"Asliddin Komilov, Oybek Abdulkhaev, Yusuf Nasrullayev, Baxodir Abdurasulov, Bahodir Abdukahhorov","doi":"10.3103/S0003701X24602059","DOIUrl":null,"url":null,"abstract":"<p>This study introduces a novel methodology for the accurate characterization of photovoltaic (PV) devices that are using spectral distributions from various unfiltered light sources, including ASTM G173-03 solar irradiance, xenon arc lamp, metal halide lamp and tungsten halogen lamp within the 300–1300 nm wavelength range. By leveraging experimental values of external quantum efficiencies and open circuit voltages from nine distinct solar cell technologies, the authors calculated efficiencies with minimal deviation from the experimental benchmarks. The approach uniformly applies across all light sources, revealing a significant correlation between the power and spectrum of light sources that mitigates their spectral influence on solar cell output parameters. This work not only advances the understanding of light source effects on PV device performance but also proposes a correction methodology that significantly reduces evaluation errors, providing a pathway towards more accurate and cost-effective PV device testing and characterization.</p>","PeriodicalId":475,"journal":{"name":"Applied Solar Energy","volume":null,"pages":null},"PeriodicalIF":1.2040,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error Minimization in PV Characterization When Using Unfiltered Light Sources\",\"authors\":\"Asliddin Komilov, Oybek Abdulkhaev, Yusuf Nasrullayev, Baxodir Abdurasulov, Bahodir Abdukahhorov\",\"doi\":\"10.3103/S0003701X24602059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study introduces a novel methodology for the accurate characterization of photovoltaic (PV) devices that are using spectral distributions from various unfiltered light sources, including ASTM G173-03 solar irradiance, xenon arc lamp, metal halide lamp and tungsten halogen lamp within the 300–1300 nm wavelength range. By leveraging experimental values of external quantum efficiencies and open circuit voltages from nine distinct solar cell technologies, the authors calculated efficiencies with minimal deviation from the experimental benchmarks. The approach uniformly applies across all light sources, revealing a significant correlation between the power and spectrum of light sources that mitigates their spectral influence on solar cell output parameters. This work not only advances the understanding of light source effects on PV device performance but also proposes a correction methodology that significantly reduces evaluation errors, providing a pathway towards more accurate and cost-effective PV device testing and characterization.</p>\",\"PeriodicalId\":475,\"journal\":{\"name\":\"Applied Solar Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2040,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Solar Energy\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0003701X24602059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Solar Energy","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.3103/S0003701X24602059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Error Minimization in PV Characterization When Using Unfiltered Light Sources
This study introduces a novel methodology for the accurate characterization of photovoltaic (PV) devices that are using spectral distributions from various unfiltered light sources, including ASTM G173-03 solar irradiance, xenon arc lamp, metal halide lamp and tungsten halogen lamp within the 300–1300 nm wavelength range. By leveraging experimental values of external quantum efficiencies and open circuit voltages from nine distinct solar cell technologies, the authors calculated efficiencies with minimal deviation from the experimental benchmarks. The approach uniformly applies across all light sources, revealing a significant correlation between the power and spectrum of light sources that mitigates their spectral influence on solar cell output parameters. This work not only advances the understanding of light source effects on PV device performance but also proposes a correction methodology that significantly reduces evaluation errors, providing a pathway towards more accurate and cost-effective PV device testing and characterization.
期刊介绍:
Applied Solar Energy is an international peer reviewed journal covers various topics of research and development studies on solar energy conversion and use: photovoltaics, thermophotovoltaics, water heaters, passive solar heating systems, drying of agricultural production, water desalination, solar radiation condensers, operation of Big Solar Oven, combined use of solar energy and traditional energy sources, new semiconductors for solar cells and thermophotovoltaic system photocells, engines for autonomous solar stations.