薄交界弹性板的非强制问题

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Alexander M Khludnev
{"title":"薄交界弹性板的非强制问题","authors":"Alexander M Khludnev","doi":"10.1177/10812865241252375","DOIUrl":null,"url":null,"abstract":"We consider a non-coercive boundary value problem for two elastic Kirchhoff–Love plates connected to each other by a thin junction. The non-coercivity of the problem is due to the Neumann-type conditions imposed at the external boundaries of the plates. A solution existence is proved for suitable given external forces. Passages to limits are justified as a rigidity parameter of the junction tends to infinity and to zero. We prove that the model corresponding to the first limit case describes an equilibrium of elastic plates with a thin rigid junction; the second limit model fits to the equilibrium state of two elastic plates independent of each other.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"27 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-coercive problems for elastic plates with thin junction\",\"authors\":\"Alexander M Khludnev\",\"doi\":\"10.1177/10812865241252375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a non-coercive boundary value problem for two elastic Kirchhoff–Love plates connected to each other by a thin junction. The non-coercivity of the problem is due to the Neumann-type conditions imposed at the external boundaries of the plates. A solution existence is proved for suitable given external forces. Passages to limits are justified as a rigidity parameter of the junction tends to infinity and to zero. We prove that the model corresponding to the first limit case describes an equilibrium of elastic plates with a thin rigid junction; the second limit model fits to the equilibrium state of two elastic plates independent of each other.\",\"PeriodicalId\":49854,\"journal\":{\"name\":\"Mathematics and Mechanics of Solids\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10812865241252375\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865241252375","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了两个通过薄交界处相互连接的弹性基尔霍夫-洛夫板的非矫顽力边界值问题。问题的非矫顽力是由于在板的外部边界施加了 Neumann 型条件。对于合适的给定外力,证明了解的存在性。当交界处的刚度参数趋于无穷大或趋于零时,证明了进入极限的合理性。我们证明,与第一种极限情况相对应的模型描述了具有薄刚性交界处的弹性板的平衡状态;第二种极限模型适合于两个相互独立的弹性板的平衡状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-coercive problems for elastic plates with thin junction
We consider a non-coercive boundary value problem for two elastic Kirchhoff–Love plates connected to each other by a thin junction. The non-coercivity of the problem is due to the Neumann-type conditions imposed at the external boundaries of the plates. A solution existence is proved for suitable given external forces. Passages to limits are justified as a rigidity parameter of the junction tends to infinity and to zero. We prove that the model corresponding to the first limit case describes an equilibrium of elastic plates with a thin rigid junction; the second limit model fits to the equilibrium state of two elastic plates independent of each other.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids 工程技术-材料科学:综合
CiteScore
4.80
自引率
19.20%
发文量
159
审稿时长
1 months
期刊介绍: Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science. The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信