两个拉伸矩形表面之间具有随温度变化的流体特性的层流

Nicolas Mam Bakalack, Valjacques Nyemb Nsoga, Gérémino Ella Eny, Martin N. Azese, Jacques Hona
{"title":"两个拉伸矩形表面之间具有随温度变化的流体特性的层流","authors":"Nicolas Mam Bakalack, Valjacques Nyemb Nsoga, Gérémino Ella Eny, Martin N. Azese, Jacques Hona","doi":"10.1515/zna-2024-0101","DOIUrl":null,"url":null,"abstract":"The Navier–Stokes equations and the energy equation are used to investigate a fluid flow between two stretching rectangular surfaces subjected to a temperature difference that affects the dynamic viscosity and thermal conductivity of the fluid. The wall stretching process enhances the momentum boundary layer thickness which slows the axial motion of the fluid away from the flow boundaries. When the stretching parameter <jats:italic>γ</jats:italic> is equal to 1, that is the case corresponding to symmetric stretching, the minimum of the axial velocity is located at the midplane of the channel <jats:italic>y</jats:italic> = 0.5 if the viscosity variational parameter <jats:italic>α</jats:italic> equals 0. This minimum moves towards the region 0.5 &lt; <jats:italic>y</jats:italic> &lt; 1 for <jats:italic>α</jats:italic> &gt; 0, but migrates towards the region 0 &lt; <jats:italic>y</jats:italic> &lt; 0.5 for <jats:italic>α</jats:italic> &lt; 0. Moreover, in the case of symmetric stretching corresponding to <jats:italic>γ</jats:italic> = 1, the growth in Reynolds number Re tends to increase the axial velocity around the middle of the channel for <jats:italic>α</jats:italic> ≥ 0 in the attempt to counteract the effects of enhancing the momentum boundary layer thickness leading to the flattening of axial velocity profiles for Re ≥ 100. While the conductivity variational parameter <jats:italic>β</jats:italic> does not influence enough the fluid dynamics and heat transfer, the Reynolds number Re and the Péclet number <jats:italic>Pé</jats:italic> can increase or decrease the temperature distribution inside the channel depending on the sign of the parameter <jats:italic>α</jats:italic>. Practical applications related to the present study include lubrification, food manufacturing, paint industries, extrusion processes in plastic and metal industries.","PeriodicalId":23871,"journal":{"name":"Zeitschrift für Naturforschung A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laminar flow with temperature-dependent fluid properties between two stretching rectangular surfaces\",\"authors\":\"Nicolas Mam Bakalack, Valjacques Nyemb Nsoga, Gérémino Ella Eny, Martin N. Azese, Jacques Hona\",\"doi\":\"10.1515/zna-2024-0101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Navier–Stokes equations and the energy equation are used to investigate a fluid flow between two stretching rectangular surfaces subjected to a temperature difference that affects the dynamic viscosity and thermal conductivity of the fluid. The wall stretching process enhances the momentum boundary layer thickness which slows the axial motion of the fluid away from the flow boundaries. When the stretching parameter <jats:italic>γ</jats:italic> is equal to 1, that is the case corresponding to symmetric stretching, the minimum of the axial velocity is located at the midplane of the channel <jats:italic>y</jats:italic> = 0.5 if the viscosity variational parameter <jats:italic>α</jats:italic> equals 0. This minimum moves towards the region 0.5 &lt; <jats:italic>y</jats:italic> &lt; 1 for <jats:italic>α</jats:italic> &gt; 0, but migrates towards the region 0 &lt; <jats:italic>y</jats:italic> &lt; 0.5 for <jats:italic>α</jats:italic> &lt; 0. Moreover, in the case of symmetric stretching corresponding to <jats:italic>γ</jats:italic> = 1, the growth in Reynolds number Re tends to increase the axial velocity around the middle of the channel for <jats:italic>α</jats:italic> ≥ 0 in the attempt to counteract the effects of enhancing the momentum boundary layer thickness leading to the flattening of axial velocity profiles for Re ≥ 100. While the conductivity variational parameter <jats:italic>β</jats:italic> does not influence enough the fluid dynamics and heat transfer, the Reynolds number Re and the Péclet number <jats:italic>Pé</jats:italic> can increase or decrease the temperature distribution inside the channel depending on the sign of the parameter <jats:italic>α</jats:italic>. Practical applications related to the present study include lubrification, food manufacturing, paint industries, extrusion processes in plastic and metal industries.\",\"PeriodicalId\":23871,\"journal\":{\"name\":\"Zeitschrift für Naturforschung A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Naturforschung A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/zna-2024-0101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zna-2024-0101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用纳维-斯托克斯方程和能量方程来研究两个拉伸矩形表面之间的流体流动,该流动受到影响流体动态粘度和热导率的温差的作用。壁面拉伸过程增加了动量边界层厚度,从而减缓了流体远离流动边界的轴向运动。当拉伸参数 γ 等于 1 时,即对应于对称拉伸的情况,如果粘度变化参数 α 等于 0,则轴向速度的最小值位于通道的中平面 y = 0.5;当 α > 0 时,该最小值向 0.5 < y < 1 区域移动,但当 α < 0 时,该最小值向 0 < y < 0.此外,在相当于 γ = 1 的对称拉伸情况下,雷诺数 Re 的增长倾向于在 α ≥ 0 时提高通道中部周围的轴向速度,以抵消动量边界层厚度增加导致 Re ≥ 100 时轴向速度曲线变平的影响。虽然传导性可变参数 β 对流体动力学和传热影响不大,但雷诺数 Re 和贝克莱特数 Pé 可根据参数 α 的符号增减通道内的温度分布。 与本研究相关的实际应用包括润滑、食品制造、涂料工业、塑料和金属工业的挤压过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laminar flow with temperature-dependent fluid properties between two stretching rectangular surfaces
The Navier–Stokes equations and the energy equation are used to investigate a fluid flow between two stretching rectangular surfaces subjected to a temperature difference that affects the dynamic viscosity and thermal conductivity of the fluid. The wall stretching process enhances the momentum boundary layer thickness which slows the axial motion of the fluid away from the flow boundaries. When the stretching parameter γ is equal to 1, that is the case corresponding to symmetric stretching, the minimum of the axial velocity is located at the midplane of the channel y = 0.5 if the viscosity variational parameter α equals 0. This minimum moves towards the region 0.5 < y < 1 for α > 0, but migrates towards the region 0 < y < 0.5 for α < 0. Moreover, in the case of symmetric stretching corresponding to γ = 1, the growth in Reynolds number Re tends to increase the axial velocity around the middle of the channel for α ≥ 0 in the attempt to counteract the effects of enhancing the momentum boundary layer thickness leading to the flattening of axial velocity profiles for Re ≥ 100. While the conductivity variational parameter β does not influence enough the fluid dynamics and heat transfer, the Reynolds number Re and the Péclet number can increase or decrease the temperature distribution inside the channel depending on the sign of the parameter α. Practical applications related to the present study include lubrification, food manufacturing, paint industries, extrusion processes in plastic and metal industries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信