{"title":"在具有不连续特性的介质中稳定前沿","authors":"N. T. Levashova, E. A. Chunzhuk, A. O. Orlov","doi":"10.1134/S0040577924070079","DOIUrl":null,"url":null,"abstract":"<p> We study the autowave front propagation in a medium with discontinuous characteristics and the conditions for its stabilization to a stationary solution with a large gradient at the interface between media in the one-dimensional case. The asymptotic method of differential inequalities, based on constructing an asymptotic approximation of the solution, is the main method of study. We develop an algorithm for constructing such an approximation for the solution of the moving front form in a medium with discontinuous characteristics. The application of such an algorithm requires a detailed analysis of the behavior of the solution in neighborhoods of two singular points: the front localization point and the medium discontinuity point. As a result, we obtain a system of equations for the front propagation speed; this distinguishes this paper from the previously published ones. The developed algorithm can be used to describe autowave propagation in layered media. The results can also be extended to the multidimensional case. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilization of the front in a medium with discontinuous characteristics\",\"authors\":\"N. T. Levashova, E. A. Chunzhuk, A. O. Orlov\",\"doi\":\"10.1134/S0040577924070079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We study the autowave front propagation in a medium with discontinuous characteristics and the conditions for its stabilization to a stationary solution with a large gradient at the interface between media in the one-dimensional case. The asymptotic method of differential inequalities, based on constructing an asymptotic approximation of the solution, is the main method of study. We develop an algorithm for constructing such an approximation for the solution of the moving front form in a medium with discontinuous characteristics. The application of such an algorithm requires a detailed analysis of the behavior of the solution in neighborhoods of two singular points: the front localization point and the medium discontinuity point. As a result, we obtain a system of equations for the front propagation speed; this distinguishes this paper from the previously published ones. The developed algorithm can be used to describe autowave propagation in layered media. The results can also be extended to the multidimensional case. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924070079\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924070079","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Stabilization of the front in a medium with discontinuous characteristics
We study the autowave front propagation in a medium with discontinuous characteristics and the conditions for its stabilization to a stationary solution with a large gradient at the interface between media in the one-dimensional case. The asymptotic method of differential inequalities, based on constructing an asymptotic approximation of the solution, is the main method of study. We develop an algorithm for constructing such an approximation for the solution of the moving front form in a medium with discontinuous characteristics. The application of such an algorithm requires a detailed analysis of the behavior of the solution in neighborhoods of two singular points: the front localization point and the medium discontinuity point. As a result, we obtain a system of equations for the front propagation speed; this distinguishes this paper from the previously published ones. The developed algorithm can be used to describe autowave propagation in layered media. The results can also be extended to the multidimensional case.
期刊介绍:
Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems.
Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.