具有模量不连续平流的反应-平流-扩散方程的边界控制问题

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
P. E. Bulatov, Han Cheng, Yuxuan Wei, V. T. Volkov, N. T. Levashova
{"title":"具有模量不连续平流的反应-平流-扩散方程的边界控制问题","authors":"P. E. Bulatov,&nbsp;Han Cheng,&nbsp;Yuxuan Wei,&nbsp;V. T. Volkov,&nbsp;N. T. Levashova","doi":"10.1134/S0040577924070043","DOIUrl":null,"url":null,"abstract":"<p> We consider a periodic problem for a singularly perturbed parabolic reaction–diffusion–advection equation of the Burgers type with the modulus advection; it has a solution in the form of a moving front. We formulate conditions for the existence of such a solution and construct its asymptotic approximation. We pose a control problem where the required front propagation law is implemented by a specially chosen boundary condition. We construct an asymptotic solution of the boundary control problem. Using the asymptotic method of differential inequalities, we estimate the accuracy of the solution of the control problem. We propose an original numerical algorithm for solving singularly perturbed problems involving the modulus advection. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary control problem for the reaction– advection– diffusion equation with a modulus discontinuity of advection\",\"authors\":\"P. E. Bulatov,&nbsp;Han Cheng,&nbsp;Yuxuan Wei,&nbsp;V. T. Volkov,&nbsp;N. T. Levashova\",\"doi\":\"10.1134/S0040577924070043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We consider a periodic problem for a singularly perturbed parabolic reaction–diffusion–advection equation of the Burgers type with the modulus advection; it has a solution in the form of a moving front. We formulate conditions for the existence of such a solution and construct its asymptotic approximation. We pose a control problem where the required front propagation law is implemented by a specially chosen boundary condition. We construct an asymptotic solution of the boundary control problem. Using the asymptotic method of differential inequalities, we estimate the accuracy of the solution of the control problem. We propose an original numerical algorithm for solving singularly perturbed problems involving the modulus advection. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924070043\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924070043","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们考虑了一个具有模量平流的奇异扰动抛物面反应-扩散-平流方程的周期性问题;它有一个移动前沿形式的解。我们提出了这种解存在的条件,并构建了它的渐近近似值。我们提出了一个控制问题,在这个问题中,所需的前沿传播规律是通过特别选择的边界条件来实现的。我们构建了边界控制问题的渐近解。利用微分不等式的渐近方法,我们估算了控制问题解的精度。我们提出了一种解决涉及模量平流的奇异扰动问题的原创数值算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Boundary control problem for the reaction–  advection–  diffusion  equation with a modulus discontinuity of advection

Boundary control problem for the reaction– advection– diffusion equation with a modulus discontinuity of advection

We consider a periodic problem for a singularly perturbed parabolic reaction–diffusion–advection equation of the Burgers type with the modulus advection; it has a solution in the form of a moving front. We formulate conditions for the existence of such a solution and construct its asymptotic approximation. We pose a control problem where the required front propagation law is implemented by a specially chosen boundary condition. We construct an asymptotic solution of the boundary control problem. Using the asymptotic method of differential inequalities, we estimate the accuracy of the solution of the control problem. We propose an original numerical algorithm for solving singularly perturbed problems involving the modulus advection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信