具有 KPZ 非线性的快速和慢速反应-扩散-对流方程系统中带有边界层的静态解的存在性和稳定性

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
N. N. Nefedov, A. O. Orlov
{"title":"具有 KPZ 非线性的快速和慢速反应-扩散-对流方程系统中带有边界层的静态解的存在性和稳定性","authors":"N. N. Nefedov,&nbsp;A. O. Orlov","doi":"10.1134/S0040577924070092","DOIUrl":null,"url":null,"abstract":"<p> The existence of stationary solutions of singularly perturbed systems of reaction–diffusion–advection equations is studied in the case of fast and slow reaction–diffusion–advection equations with nonlinearities containing the gradient of the squared sought function (KPZ nonlinearities). The asymptotic method of differential inequalities is used to prove the existence theorems. The boundary layer asymptotics of solutions are constructed in the case of Neumann and Dirichlet boundary conditions. The case of quasimonotone sources and systems without the quasimonotonicity requirement is also considered. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"220 1","pages":"1178 - 1192"},"PeriodicalIF":1.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and stability of stationary solutions with boundary layers in a system of fast and slow reaction–diffusion–advection equations with KPZ nonlinearities\",\"authors\":\"N. N. Nefedov,&nbsp;A. O. Orlov\",\"doi\":\"10.1134/S0040577924070092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> The existence of stationary solutions of singularly perturbed systems of reaction–diffusion–advection equations is studied in the case of fast and slow reaction–diffusion–advection equations with nonlinearities containing the gradient of the squared sought function (KPZ nonlinearities). The asymptotic method of differential inequalities is used to prove the existence theorems. The boundary layer asymptotics of solutions are constructed in the case of Neumann and Dirichlet boundary conditions. The case of quasimonotone sources and systems without the quasimonotonicity requirement is also considered. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"220 1\",\"pages\":\"1178 - 1192\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924070092\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924070092","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在快速和慢速反应-扩散-对流方程中,研究了奇异扰动反应-扩散-对流方程组的静止解的存在性,这些方程组具有包含平方求函数梯度的非线性(KPZ 非线性)。微分不等式的渐近方法用于证明存在定理。在 Neumann 和 Dirichlet 边界条件情况下,构建了解的边界层渐近线。此外,还考虑了准单调源和无准单调性要求系统的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and stability of stationary solutions with boundary layers in a system of fast and slow reaction–diffusion–advection equations with KPZ nonlinearities

The existence of stationary solutions of singularly perturbed systems of reaction–diffusion–advection equations is studied in the case of fast and slow reaction–diffusion–advection equations with nonlinearities containing the gradient of the squared sought function (KPZ nonlinearities). The asymptotic method of differential inequalities is used to prove the existence theorems. The boundary layer asymptotics of solutions are constructed in the case of Neumann and Dirichlet boundary conditions. The case of quasimonotone sources and systems without the quasimonotonicity requirement is also considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信