{"title":"以有潜在危险的小行星和木星外层卫星为例,探讨轨道动力学逆问题中的非线性问题","authors":"M. A. Banschikova, O. M. Syusina","doi":"10.1134/S004057792407002X","DOIUrl":null,"url":null,"abstract":"<p> We present the results of a study of nonlinearity in inverse problems of the orbital dynamics of Jupiter’s outer satellites, discovered in 2018–2022, and of potentially hazardous asteroids. The results show that for a more accurate study of orbital uncertainty, we must first find the minimum value of a nonlinearity indicator by varying the initial epoch within the measurable interval for different parametric spaces. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinearity in the inverse problems of orbital dynamics using the example of potentially hazardous asteroids and outer satellites of Jupiter\",\"authors\":\"M. A. Banschikova, O. M. Syusina\",\"doi\":\"10.1134/S004057792407002X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We present the results of a study of nonlinearity in inverse problems of the orbital dynamics of Jupiter’s outer satellites, discovered in 2018–2022, and of potentially hazardous asteroids. The results show that for a more accurate study of orbital uncertainty, we must first find the minimum value of a nonlinearity indicator by varying the initial epoch within the measurable interval for different parametric spaces. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S004057792407002X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S004057792407002X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Nonlinearity in the inverse problems of orbital dynamics using the example of potentially hazardous asteroids and outer satellites of Jupiter
We present the results of a study of nonlinearity in inverse problems of the orbital dynamics of Jupiter’s outer satellites, discovered in 2018–2022, and of potentially hazardous asteroids. The results show that for a more accurate study of orbital uncertainty, we must first find the minimum value of a nonlinearity indicator by varying the initial epoch within the measurable interval for different parametric spaces.
期刊介绍:
Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems.
Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.