保留马丁内特形式的三维矢量场的奇异性

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
S. Anastassiou
{"title":"保留马丁内特形式的三维矢量场的奇异性","authors":"S. Anastassiou","doi":"10.1134/S0040577924070018","DOIUrl":null,"url":null,"abstract":"<p> We study the local structure of vector fields on <span>\\(\\mathbb{R}^3\\)</span> that preserve the Martinet <span>\\(1\\)</span>-form <span>\\(\\alpha=(1+x)dy\\pm z\\,dz\\)</span>. We classify their singularities up to diffeomorphisms that preserve the form <span>\\(\\alpha\\)</span>, as well as their transverse unfoldings. We are thus able to provide a fairly complete list of the bifurcations such vector fields undergo. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"220 1","pages":"1061 - 1069"},"PeriodicalIF":1.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singularities of 3D vector fields preserving the Martinet form\",\"authors\":\"S. Anastassiou\",\"doi\":\"10.1134/S0040577924070018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We study the local structure of vector fields on <span>\\\\(\\\\mathbb{R}^3\\\\)</span> that preserve the Martinet <span>\\\\(1\\\\)</span>-form <span>\\\\(\\\\alpha=(1+x)dy\\\\pm z\\\\,dz\\\\)</span>. We classify their singularities up to diffeomorphisms that preserve the form <span>\\\\(\\\\alpha\\\\)</span>, as well as their transverse unfoldings. We are thus able to provide a fairly complete list of the bifurcations such vector fields undergo. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"220 1\",\"pages\":\"1061 - 1069\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924070018\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924070018","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

Abstract 我们研究了在\(\mathbb{R}^3\)上保持Martinet \(1\)-形式 \(\alpha=(1+x)dy\pm z\,dz\) 的向量场的局部结构。我们对它们的奇点进行了分类,直到保留了形式(\α)的差分变形,以及它们的横向展开。因此,我们能够提供一份相当完整的清单,列出这些向量场所经历的分岔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Singularities of 3D vector fields preserving the Martinet form

Singularities of 3D vector fields preserving the Martinet form

We study the local structure of vector fields on \(\mathbb{R}^3\) that preserve the Martinet \(1\)-form \(\alpha=(1+x)dy\pm z\,dz\). We classify their singularities up to diffeomorphisms that preserve the form \(\alpha\), as well as their transverse unfoldings. We are thus able to provide a fairly complete list of the bifurcations such vector fields undergo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信