无多格数图的路径同调及其与空间同调的比较

Xin Fu, Sergei O. Ivanov
{"title":"无多格数图的路径同调及其与空间同调的比较","authors":"Xin Fu, Sergei O. Ivanov","doi":"arxiv-2407.17001","DOIUrl":null,"url":null,"abstract":"For a digraph $G$ without multisquares and a field $\\mathbb{F}$, we construct\na basis of the vector space of path $n$-chains $\\Omega_n(G;\\mathbb{F})$ for\n$n\\geq 0$, generalising the basis of $\\Omega_3(G;\\mathbb{F})$ constructed by\nGrigory'an. For a field $\\mathbb{F},$ we consider the $\\mathbb{F}$-path Euler\ncharacteristic $\\chi^\\mathbb{F}(G)$ of a digraph $G$ defined as the alternating\nsum of dimensions of path homology groups with coefficients in $\\mathbb{F}.$ If\n$\\Omega_\\bullet(G;\\mathbb{F})$ is a bounded chain complex, the constructed\nbases can be applied to compute $\\chi^\\mathbb{F}(G)$. We provide an explicit\nexample of a digraph $\\mathcal{G}$ whose $\\mathbb{F}$-path Euler characteristic\ndepends on whether the characteristic of $\\mathbb{F}$ is two, revealing the\ndifferences between GLMY theory and the homology theory of spaces. This allows\nus to prove that there is no topological space $X$ whose homology is isomorphic\nto path homology of the digraph $H_*(X;\\mathbb{K})\\cong {\\rm\nPH}_*(\\mathcal{G};\\mathbb{K})$ simultaneously for $\\mathbb{K}=\\mathbb{Z}$ and\n$\\mathbb{K}=\\mathbb{Z}/2\\mathbb{Z}.$","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path homology of digraphs without multisquares and its comparison with homology of spaces\",\"authors\":\"Xin Fu, Sergei O. Ivanov\",\"doi\":\"arxiv-2407.17001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a digraph $G$ without multisquares and a field $\\\\mathbb{F}$, we construct\\na basis of the vector space of path $n$-chains $\\\\Omega_n(G;\\\\mathbb{F})$ for\\n$n\\\\geq 0$, generalising the basis of $\\\\Omega_3(G;\\\\mathbb{F})$ constructed by\\nGrigory'an. For a field $\\\\mathbb{F},$ we consider the $\\\\mathbb{F}$-path Euler\\ncharacteristic $\\\\chi^\\\\mathbb{F}(G)$ of a digraph $G$ defined as the alternating\\nsum of dimensions of path homology groups with coefficients in $\\\\mathbb{F}.$ If\\n$\\\\Omega_\\\\bullet(G;\\\\mathbb{F})$ is a bounded chain complex, the constructed\\nbases can be applied to compute $\\\\chi^\\\\mathbb{F}(G)$. We provide an explicit\\nexample of a digraph $\\\\mathcal{G}$ whose $\\\\mathbb{F}$-path Euler characteristic\\ndepends on whether the characteristic of $\\\\mathbb{F}$ is two, revealing the\\ndifferences between GLMY theory and the homology theory of spaces. This allows\\nus to prove that there is no topological space $X$ whose homology is isomorphic\\nto path homology of the digraph $H_*(X;\\\\mathbb{K})\\\\cong {\\\\rm\\nPH}_*(\\\\mathcal{G};\\\\mathbb{K})$ simultaneously for $\\\\mathbb{K}=\\\\mathbb{Z}$ and\\n$\\\\mathbb{K}=\\\\mathbb{Z}/2\\\\mathbb{Z}.$\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于一个无多乘的数图 $G$ 和一个域 $/mathbb{F}$,我们为 $ngeq 0$ 构造了路径 $n$ 链的向量空间 $Omega_n(G;\mathbb{F})$ 的基础,这是对格里高利安构造的 $\Omega_3(G;\mathbb{F})$ 基础的推广。对于一个域$\mathbb{F},$ 我们考虑一个数图$G$的$\mathbb{F}$路径欧拉特征$\chi^\mathbb{F}(G)$,它被定义为系数在$\mathbb{F}中的路径同调群的维数交替和。如果$\Omega_\bullet(G;\mathbb{F})$ 是有界链复数,那么所构造的基础就可以用来计算 $\chi^\mathbb{F}(G)$。我们提供了一个例子,说明 $\mathcal{G}$ 的路径欧拉特征取决于 $\mathbb{F}$ 的特征是否为二,这揭示了 GLMY 理论与空间同调理论之间的差异。这使我们能够证明,在 $\mathbb{K}=\mathbb{Z}$ 和 $\mathbb{K}=\mathbb{Z}/2\mathbb{Z}$ 时,不存在同调与数图 $H_*(X;\mathbb{K})\cong {rmPH}_*(\mathcal{G};\mathbb{K})$ 的路径同调同构的拓扑空间 $X$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path homology of digraphs without multisquares and its comparison with homology of spaces
For a digraph $G$ without multisquares and a field $\mathbb{F}$, we construct a basis of the vector space of path $n$-chains $\Omega_n(G;\mathbb{F})$ for $n\geq 0$, generalising the basis of $\Omega_3(G;\mathbb{F})$ constructed by Grigory'an. For a field $\mathbb{F},$ we consider the $\mathbb{F}$-path Euler characteristic $\chi^\mathbb{F}(G)$ of a digraph $G$ defined as the alternating sum of dimensions of path homology groups with coefficients in $\mathbb{F}.$ If $\Omega_\bullet(G;\mathbb{F})$ is a bounded chain complex, the constructed bases can be applied to compute $\chi^\mathbb{F}(G)$. We provide an explicit example of a digraph $\mathcal{G}$ whose $\mathbb{F}$-path Euler characteristic depends on whether the characteristic of $\mathbb{F}$ is two, revealing the differences between GLMY theory and the homology theory of spaces. This allows us to prove that there is no topological space $X$ whose homology is isomorphic to path homology of the digraph $H_*(X;\mathbb{K})\cong {\rm PH}_*(\mathcal{G};\mathbb{K})$ simultaneously for $\mathbb{K}=\mathbb{Z}$ and $\mathbb{K}=\mathbb{Z}/2\mathbb{Z}.$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信