包络操作数和应用

Victor Carmona
{"title":"包络操作数和应用","authors":"Victor Carmona","doi":"arxiv-2407.18190","DOIUrl":null,"url":null,"abstract":"This work addresses the homotopical analysis of enveloping operads in a\ngeneral cofibrantly generated symmetric monoidal model category. We show the\npotential of this analysis by obtaining, in a uniform way, several central\nresults regarding the homotopy theory of operadic algebras.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enveloping operads and applications\",\"authors\":\"Victor Carmona\",\"doi\":\"arxiv-2407.18190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work addresses the homotopical analysis of enveloping operads in a\\ngeneral cofibrantly generated symmetric monoidal model category. We show the\\npotential of this analysis by obtaining, in a uniform way, several central\\nresults regarding the homotopy theory of operadic algebras.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究探讨了一般共纤生成的对称单元模型范畴中包络操作数的同调分析。我们以统一的方式获得了关于操作数代数同调理论的几个核心结果,从而展示了这种分析的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enveloping operads and applications
This work addresses the homotopical analysis of enveloping operads in a general cofibrantly generated symmetric monoidal model category. We show the potential of this analysis by obtaining, in a uniform way, several central results regarding the homotopy theory of operadic algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信