{"title":"二阶基本群的低维同调群","authors":"Behrooz Mirzaii, Elvis Torres Pérez","doi":"arxiv-2407.17632","DOIUrl":null,"url":null,"abstract":"In this article we study the first, the second and the third homology groups\nof the elementary group $\\textrm{E}_2(A)$, where $A$ is a commutative ring. In\nparticular, we prove a refined Bloch-Wigner type exact sequence over a\nsemilocal ring (with some mild restriction on its residue fields) such that\n$-1\\in (A^{\\times})^2$ or $|A^{\\times}/(A^{\\times})^2|\\leq 4$.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The low dimensional homology groups of the elementary group of rank two\",\"authors\":\"Behrooz Mirzaii, Elvis Torres Pérez\",\"doi\":\"arxiv-2407.17632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we study the first, the second and the third homology groups\\nof the elementary group $\\\\textrm{E}_2(A)$, where $A$ is a commutative ring. In\\nparticular, we prove a refined Bloch-Wigner type exact sequence over a\\nsemilocal ring (with some mild restriction on its residue fields) such that\\n$-1\\\\in (A^{\\\\times})^2$ or $|A^{\\\\times}/(A^{\\\\times})^2|\\\\leq 4$.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The low dimensional homology groups of the elementary group of rank two
In this article we study the first, the second and the third homology groups
of the elementary group $\textrm{E}_2(A)$, where $A$ is a commutative ring. In
particular, we prove a refined Bloch-Wigner type exact sequence over a
semilocal ring (with some mild restriction on its residue fields) such that
$-1\in (A^{\times})^2$ or $|A^{\times}/(A^{\times})^2|\leq 4$.