Javier Alejo, Antonio F. Galvao, Gabriel Montes-Rojas
{"title":"工具变量量化回归的第一阶段分析","authors":"Javier Alejo, Antonio F. Galvao, Gabriel Montes-Rojas","doi":"10.1177/1536867x241257803","DOIUrl":null,"url":null,"abstract":"In this article, we develop a first-stage linear regression command, fsivqreg, for an instrumental-variables quantile regression (QR) model. The quantile first stage is analogous to the least-squares case, that is, a linear projection of the endogenous variables on the instruments and other exogenous covariates, with the difference that the QR case is a weighted projection. The weights are given by the conditional density function of the innovation term in the QR structural model, at a given quantile. An empirical application illustrates its implementation.","PeriodicalId":501101,"journal":{"name":"The Stata Journal: Promoting communications on statistics and Stata","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-stage analysis for instrumental-variables quantile regression\",\"authors\":\"Javier Alejo, Antonio F. Galvao, Gabriel Montes-Rojas\",\"doi\":\"10.1177/1536867x241257803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we develop a first-stage linear regression command, fsivqreg, for an instrumental-variables quantile regression (QR) model. The quantile first stage is analogous to the least-squares case, that is, a linear projection of the endogenous variables on the instruments and other exogenous covariates, with the difference that the QR case is a weighted projection. The weights are given by the conditional density function of the innovation term in the QR structural model, at a given quantile. An empirical application illustrates its implementation.\",\"PeriodicalId\":501101,\"journal\":{\"name\":\"The Stata Journal: Promoting communications on statistics and Stata\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Stata Journal: Promoting communications on statistics and Stata\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1536867x241257803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Stata Journal: Promoting communications on statistics and Stata","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1536867x241257803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们为工具变量量化回归(QR)模型开发了一个第一阶段线性回归指令 fsivqreg。量化第一阶段类似于最小二乘法,即内生变量对工具和其他外生协变量的线性投影,不同之处在于 QR 是加权投影。权重由 QR 结构模型中创新项在给定数量级上的条件密度函数给出。一个经验应用说明了它的实施。
First-stage analysis for instrumental-variables quantile regression
In this article, we develop a first-stage linear regression command, fsivqreg, for an instrumental-variables quantile regression (QR) model. The quantile first stage is analogous to the least-squares case, that is, a linear projection of the endogenous variables on the instruments and other exogenous covariates, with the difference that the QR case is a weighted projection. The weights are given by the conditional density function of the innovation term in the QR structural model, at a given quantile. An empirical application illustrates its implementation.