使用最大模拟似然法拟合混合随机后悔最小化模型

Ziyue Zhu, Álvaro A. Gutiérrez-Vargas, Martina Vandebroek
{"title":"使用最大模拟似然法拟合混合随机后悔最小化模型","authors":"Ziyue Zhu, Álvaro A. Gutiérrez-Vargas, Martina Vandebroek","doi":"10.1177/1536867x241257802","DOIUrl":null,"url":null,"abstract":"In this article, we describe the mixrandregret command, which extends the randregret command introduced in Gutiérrez-Vargas, Meulders, and Vandebroek (2021, Stata Journal 21: 626–658) by allowing random coefficients in random regret minimization models. The newly developed mixrandregret command allows the user to specify a combination of fixed and random coefficients in the regret function of the classical random regret minimization model introduced in Chorus (2010, European Journal of Transport and Infrastructure Research 10: 181–196). In addition, the user can specify normal and lognormal distributions for the random coefficients using the appropriate command’s options. The models are fit by maximum simulated likelihood estimation using numerical integration to approximate the choice probabilities.","PeriodicalId":501101,"journal":{"name":"The Stata Journal: Promoting communications on statistics and Stata","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fitting mixed random regret minimization models using maximum simulated likelihood\",\"authors\":\"Ziyue Zhu, Álvaro A. Gutiérrez-Vargas, Martina Vandebroek\",\"doi\":\"10.1177/1536867x241257802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we describe the mixrandregret command, which extends the randregret command introduced in Gutiérrez-Vargas, Meulders, and Vandebroek (2021, Stata Journal 21: 626–658) by allowing random coefficients in random regret minimization models. The newly developed mixrandregret command allows the user to specify a combination of fixed and random coefficients in the regret function of the classical random regret minimization model introduced in Chorus (2010, European Journal of Transport and Infrastructure Research 10: 181–196). In addition, the user can specify normal and lognormal distributions for the random coefficients using the appropriate command’s options. The models are fit by maximum simulated likelihood estimation using numerical integration to approximate the choice probabilities.\",\"PeriodicalId\":501101,\"journal\":{\"name\":\"The Stata Journal: Promoting communications on statistics and Stata\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Stata Journal: Promoting communications on statistics and Stata\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1536867x241257802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Stata Journal: Promoting communications on statistics and Stata","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1536867x241257802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将介绍 mixrandregret 命令,它扩展了 Gutiérrez-Vargas、Meulders 和 Vandebroek(2021,Stata Journal 21:626-658)中引入的 randregret 命令,允许在随机后悔最小化模型中使用随机系数。新开发的 mixrandregret 命令允许用户在 Chorus(2010,《欧洲交通与基础设施研究期刊》10:181-196)中介绍的经典随机后悔最小化模型的后悔函数中指定固定系数和随机系数的组合。此外,用户还可以使用相应的命令选项为随机系数指定正态分布和对数正态分布。模型拟合采用最大模拟似然估计法,使用数值积分来近似选择概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fitting mixed random regret minimization models using maximum simulated likelihood
In this article, we describe the mixrandregret command, which extends the randregret command introduced in Gutiérrez-Vargas, Meulders, and Vandebroek (2021, Stata Journal 21: 626–658) by allowing random coefficients in random regret minimization models. The newly developed mixrandregret command allows the user to specify a combination of fixed and random coefficients in the regret function of the classical random regret minimization model introduced in Chorus (2010, European Journal of Transport and Infrastructure Research 10: 181–196). In addition, the user can specify normal and lognormal distributions for the random coefficients using the appropriate command’s options. The models are fit by maximum simulated likelihood estimation using numerical integration to approximate the choice probabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信