分层数据的两步分析

Johannes Giesecke, Ulrich Kohler
{"title":"分层数据的两步分析","authors":"Johannes Giesecke, Ulrich Kohler","doi":"10.1177/1536867x241257801","DOIUrl":null,"url":null,"abstract":"In this article, we describe the package twostep, a bundle of programs to perform analyses of hierarchical data applying the two-step approach. We consider a two-level data setup in which “microlevel” units are nested within “macrolevel” units. One-step models (which can be fit using, for example, mixed) are the most common approach to modeling two-level data. The two-step approach is an alternative in which parameters associated with microlevel and macrolevel predictors are estimated separately for each level. It can be used as an alternative to one-step models if the estimand is a cross-level interaction. We also show how the two-step approach usefully complements one-step approaches by providing exploratory data analysis, descriptive graphs, and regression diagnostics.","PeriodicalId":501101,"journal":{"name":"The Stata Journal: Promoting communications on statistics and Stata","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-step analysis of hierarchical data\",\"authors\":\"Johannes Giesecke, Ulrich Kohler\",\"doi\":\"10.1177/1536867x241257801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we describe the package twostep, a bundle of programs to perform analyses of hierarchical data applying the two-step approach. We consider a two-level data setup in which “microlevel” units are nested within “macrolevel” units. One-step models (which can be fit using, for example, mixed) are the most common approach to modeling two-level data. The two-step approach is an alternative in which parameters associated with microlevel and macrolevel predictors are estimated separately for each level. It can be used as an alternative to one-step models if the estimand is a cross-level interaction. We also show how the two-step approach usefully complements one-step approaches by providing exploratory data analysis, descriptive graphs, and regression diagnostics.\",\"PeriodicalId\":501101,\"journal\":{\"name\":\"The Stata Journal: Promoting communications on statistics and Stata\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Stata Journal: Promoting communications on statistics and Stata\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1536867x241257801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Stata Journal: Promoting communications on statistics and Stata","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1536867x241257801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将介绍 twostep 软件包,它是一个程序包,用于采用两步法对分层数据进行分析。我们考虑两级数据设置,其中 "微观 "单位嵌套在 "宏观 "单位中。一步模型(可使用混合模型等进行拟合)是两级数据建模的最常见方法。两步法是一种替代方法,在这种方法中,与微观层面和宏观层面预测因素相关的参数在每个层面上分别估算。如果估计变量是跨层次的交互作用,它可以作为一步模型的替代方法。我们还展示了两步法如何通过提供探索性数据分析、描述性图表和回归诊断,对一步法进行有效补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-step analysis of hierarchical data
In this article, we describe the package twostep, a bundle of programs to perform analyses of hierarchical data applying the two-step approach. We consider a two-level data setup in which “microlevel” units are nested within “macrolevel” units. One-step models (which can be fit using, for example, mixed) are the most common approach to modeling two-level data. The two-step approach is an alternative in which parameters associated with microlevel and macrolevel predictors are estimated separately for each level. It can be used as an alternative to one-step models if the estimand is a cross-level interaction. We also show how the two-step approach usefully complements one-step approaches by providing exploratory data analysis, descriptive graphs, and regression diagnostics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信