无铅压电超声波传感器的三维打印技术

Satya K. Ammu, Xianfeng Chen, Derin Goulart Ulcay, Saurav Sharma, Farbod Alijani, Peter G. Steeneken, Pim Groen, Kunal Masania
{"title":"无铅压电超声波传感器的三维打印技术","authors":"Satya K. Ammu, Xianfeng Chen, Derin Goulart Ulcay, Saurav Sharma, Farbod Alijani, Peter G. Steeneken, Pim Groen, Kunal Masania","doi":"10.1002/admt.202400858","DOIUrl":null,"url":null,"abstract":"Multi-material direct ink writing (DIW) of smart materials opens new possibilities for manufacturing complex-shaped structures with embedded sensing and actuation capabilities. In this study, DIW of UV-curable piezoelectric actuators is developed, which do not require high-temperature sintering, allowing direct integration with structural materials. Through particle size and ink rheology optimization, the highest d<sub>33</sub><sup>*</sup>g<sub>33</sub> piezoelectric constant compared to other DIW fabricated piezo composites is achieved, enabling tunable actuation performance. This is used to fabricate ultrasound transducers by printing piezoelectric vibrating membranes along with their support structures made from a structural ink. The impact of transducer design and scaling up transducer dimensions on the resonance behavior to design millimeter-scale ultrasound transducers with desired out-of-plane displacement is explored. A significant increase in output pressure with increasing membrane dimensions is observed. Finally, a practical application is demonstrated by using the printed transducer for accurate proximity sensing using time of flight measurements. The scalability and flexibility of the reported DIW of piezo composites can open up new advancements in biomedical, human-computer interaction, and aerospace fields.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Printing of Lead-Free Piezoelectric Ultrasound Transducers\",\"authors\":\"Satya K. Ammu, Xianfeng Chen, Derin Goulart Ulcay, Saurav Sharma, Farbod Alijani, Peter G. Steeneken, Pim Groen, Kunal Masania\",\"doi\":\"10.1002/admt.202400858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-material direct ink writing (DIW) of smart materials opens new possibilities for manufacturing complex-shaped structures with embedded sensing and actuation capabilities. In this study, DIW of UV-curable piezoelectric actuators is developed, which do not require high-temperature sintering, allowing direct integration with structural materials. Through particle size and ink rheology optimization, the highest d<sub>33</sub><sup>*</sup>g<sub>33</sub> piezoelectric constant compared to other DIW fabricated piezo composites is achieved, enabling tunable actuation performance. This is used to fabricate ultrasound transducers by printing piezoelectric vibrating membranes along with their support structures made from a structural ink. The impact of transducer design and scaling up transducer dimensions on the resonance behavior to design millimeter-scale ultrasound transducers with desired out-of-plane displacement is explored. A significant increase in output pressure with increasing membrane dimensions is observed. Finally, a practical application is demonstrated by using the printed transducer for accurate proximity sensing using time of flight measurements. The scalability and flexibility of the reported DIW of piezo composites can open up new advancements in biomedical, human-computer interaction, and aerospace fields.\",\"PeriodicalId\":7200,\"journal\":{\"name\":\"Advanced Materials & Technologies\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202400858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

智能材料的多材料直接墨水写入(DIW)为制造具有嵌入式传感和致动功能的复杂形状结构提供了新的可能性。本研究开发了紫外线固化压电致动器的直接墨水书写技术,这种技术无需高温烧结,可直接与结构材料集成。通过粒度和油墨流变优化,与其他 DIW 制造的压电复合材料相比,实现了最高的 d33*g33 压电常数,从而实现了可调的致动性能。通过打印压电振动膜及其由结构性油墨制成的支撑结构,可用于制造超声波传感器。我们探讨了换能器设计和扩大换能器尺寸对共振行为的影响,从而设计出具有理想平面外位移的毫米级超声换能器。观察到输出压力随着膜尺寸的增加而明显增加。最后,通过使用飞行时间测量将印刷换能器用于精确的近距离传感,展示了其实际应用。所报告的压电复合材料 DIW 的可扩展性和灵活性可为生物医学、人机交互和航空航天领域带来新的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

3D Printing of Lead-Free Piezoelectric Ultrasound Transducers

3D Printing of Lead-Free Piezoelectric Ultrasound Transducers
Multi-material direct ink writing (DIW) of smart materials opens new possibilities for manufacturing complex-shaped structures with embedded sensing and actuation capabilities. In this study, DIW of UV-curable piezoelectric actuators is developed, which do not require high-temperature sintering, allowing direct integration with structural materials. Through particle size and ink rheology optimization, the highest d33*g33 piezoelectric constant compared to other DIW fabricated piezo composites is achieved, enabling tunable actuation performance. This is used to fabricate ultrasound transducers by printing piezoelectric vibrating membranes along with their support structures made from a structural ink. The impact of transducer design and scaling up transducer dimensions on the resonance behavior to design millimeter-scale ultrasound transducers with desired out-of-plane displacement is explored. A significant increase in output pressure with increasing membrane dimensions is observed. Finally, a practical application is demonstrated by using the printed transducer for accurate proximity sensing using time of flight measurements. The scalability and flexibility of the reported DIW of piezo composites can open up new advancements in biomedical, human-computer interaction, and aerospace fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信