具有时变噪声的振荡器晶格同步中的卡尔达-帕里西-张普遍性类别

Ricardo Gutierrez, Rodolfo Cuerno
{"title":"具有时变噪声的振荡器晶格同步中的卡尔达-帕里西-张普遍性类别","authors":"Ricardo Gutierrez, Rodolfo Cuerno","doi":"arxiv-2407.15634","DOIUrl":null,"url":null,"abstract":"Systems of oscillators subject to time-dependent noise typically achieve\nsynchronization for long times when their mutual coupling is sufficiently\nstrong. The dynamical process whereby synchronization is reached can be thought\nof as a growth process in which an interface formed by the local phase field\ngradually roughens and eventually saturates. Such a process is here shown to\ndisplay the generic scale invariance of the one-dimensional Kardar-Parisi-Zhang\nuniversality class, including a Tracy-Widom probability distribution for phase\nfluctuations around their mean. This is revealed by numerical explorations of a\nvariety of oscillator systems: rings of generic phase oscillators and rings of\nparadigmatic limit-cycle oscillators, like Stuart-Landau and van der Pol. It\nalso agrees with analytical expectations derived under conditions of strong\nmutual coupling. The nonequilibrium critical behavior that we find is robust\nand transcends the details of the oscillators considered. Hence, it may well be\naccessible to experimental ensembles of oscillators in the presence of e.g.\nthermal noise.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kardar-Parisi-Zhang universality class in the synchronization of oscillator lattices with time-dependent noise\",\"authors\":\"Ricardo Gutierrez, Rodolfo Cuerno\",\"doi\":\"arxiv-2407.15634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Systems of oscillators subject to time-dependent noise typically achieve\\nsynchronization for long times when their mutual coupling is sufficiently\\nstrong. The dynamical process whereby synchronization is reached can be thought\\nof as a growth process in which an interface formed by the local phase field\\ngradually roughens and eventually saturates. Such a process is here shown to\\ndisplay the generic scale invariance of the one-dimensional Kardar-Parisi-Zhang\\nuniversality class, including a Tracy-Widom probability distribution for phase\\nfluctuations around their mean. This is revealed by numerical explorations of a\\nvariety of oscillator systems: rings of generic phase oscillators and rings of\\nparadigmatic limit-cycle oscillators, like Stuart-Landau and van der Pol. It\\nalso agrees with analytical expectations derived under conditions of strong\\nmutual coupling. The nonequilibrium critical behavior that we find is robust\\nand transcends the details of the oscillators considered. Hence, it may well be\\naccessible to experimental ensembles of oscillators in the presence of e.g.\\nthermal noise.\",\"PeriodicalId\":501305,\"journal\":{\"name\":\"arXiv - PHYS - Adaptation and Self-Organizing Systems\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Adaptation and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.15634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受到随时间变化的噪声影响的振荡器系统,当其相互耦合足够强时,通常会在很长时间内实现同步。达到同步的动力学过程可以看作是一个生长过程,在这个过程中,由局部相场形成的界面逐渐变得粗糙,最终达到饱和。这一过程显示了一维卡尔达-帕里西-张普遍性类的一般尺度不变性,包括相位波动在其均值附近的特雷西-维多姆概率分布。对各种振荡器系统的数值探索揭示了这一点:一般相位振荡器环和范式极限周期振荡器环,如斯图尔特-朗道和范德尔波尔。它与在强相互耦合条件下得出的分析预期相吻合。我们发现的非平衡临界行为是强大的,超越了所考虑的振荡器的细节。因此,在存在热噪声等因素的情况下,振荡器的实验组合很可能会出现这种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kardar-Parisi-Zhang universality class in the synchronization of oscillator lattices with time-dependent noise
Systems of oscillators subject to time-dependent noise typically achieve synchronization for long times when their mutual coupling is sufficiently strong. The dynamical process whereby synchronization is reached can be thought of as a growth process in which an interface formed by the local phase field gradually roughens and eventually saturates. Such a process is here shown to display the generic scale invariance of the one-dimensional Kardar-Parisi-Zhang universality class, including a Tracy-Widom probability distribution for phase fluctuations around their mean. This is revealed by numerical explorations of a variety of oscillator systems: rings of generic phase oscillators and rings of paradigmatic limit-cycle oscillators, like Stuart-Landau and van der Pol. It also agrees with analytical expectations derived under conditions of strong mutual coupling. The nonequilibrium critical behavior that we find is robust and transcends the details of the oscillators considered. Hence, it may well be accessible to experimental ensembles of oscillators in the presence of e.g. thermal noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信