常见问题:如何估算产出缺口?

Fabio Canova
{"title":"常见问题:如何估算产出缺口?","authors":"Fabio Canova","doi":"10.1093/ej/ueae072","DOIUrl":null,"url":null,"abstract":"I investigate the properties of output gaps in New Keynesian DSGE models and study the relationship between theory-based quantities and the estimates obtained with standard approaches. Theoretical gaps display low frequency variations, have similar frequency domain representation as potentials and are generally correlated with them. Potentials have important business cycle variability. Existing statistical approaches fail to recognize these features and generate distorted estimates. Gaps are best estimated with a Polynomial filter. Explanations for the outcomes are given. I propose a statistical procedure reducing estimation biases.","PeriodicalId":501319,"journal":{"name":"The Economic Journal","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FAQ: How do I estimate the output gap?\",\"authors\":\"Fabio Canova\",\"doi\":\"10.1093/ej/ueae072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I investigate the properties of output gaps in New Keynesian DSGE models and study the relationship between theory-based quantities and the estimates obtained with standard approaches. Theoretical gaps display low frequency variations, have similar frequency domain representation as potentials and are generally correlated with them. Potentials have important business cycle variability. Existing statistical approaches fail to recognize these features and generate distorted estimates. Gaps are best estimated with a Polynomial filter. Explanations for the outcomes are given. I propose a statistical procedure reducing estimation biases.\",\"PeriodicalId\":501319,\"journal\":{\"name\":\"The Economic Journal\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Economic Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ej/ueae072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Economic Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ej/ueae072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我研究了新凯恩斯主义 DSGE 模型中产出缺口的特性,并研究了基于理论的数量与用标准方法获得的估计值之间的关系。理论缺口显示出低频变化,与潜势具有相似的频域表示,并且通常与潜势相关。潜势具有重要的商业周期变异性。现有的统计方法无法识别这些特征并产生失真的估计值。使用多项式滤波器对缺口进行估计效果最佳。我给出了结果的解释。我提出了一种减少估计偏差的统计程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FAQ: How do I estimate the output gap?
I investigate the properties of output gaps in New Keynesian DSGE models and study the relationship between theory-based quantities and the estimates obtained with standard approaches. Theoretical gaps display low frequency variations, have similar frequency domain representation as potentials and are generally correlated with them. Potentials have important business cycle variability. Existing statistical approaches fail to recognize these features and generate distorted estimates. Gaps are best estimated with a Polynomial filter. Explanations for the outcomes are given. I propose a statistical procedure reducing estimation biases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信