图论中的黄金分割率:调查

Saeid Alikhani, Nima Ghanbari
{"title":"图论中的黄金分割率:调查","authors":"Saeid Alikhani, Nima Ghanbari","doi":"arxiv-2407.15860","DOIUrl":null,"url":null,"abstract":"Much has been written about the golden ratio $\\phi=\\frac{1+\\sqrt{5}}{2}$ and\nthis strange number appears mysteriously in many mathematical calculations. In\nthis article, we review the appearance of this number in the graph theory. More\nprecisely, we review the relevance of this number in topics such as the number\nof spanning trees, topological indices, energy, chromatic roots, domination\nroots and the number of domatic partitions of graphs.","PeriodicalId":501462,"journal":{"name":"arXiv - MATH - History and Overview","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Golden ratio in graph theory: A survey\",\"authors\":\"Saeid Alikhani, Nima Ghanbari\",\"doi\":\"arxiv-2407.15860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Much has been written about the golden ratio $\\\\phi=\\\\frac{1+\\\\sqrt{5}}{2}$ and\\nthis strange number appears mysteriously in many mathematical calculations. In\\nthis article, we review the appearance of this number in the graph theory. More\\nprecisely, we review the relevance of this number in topics such as the number\\nof spanning trees, topological indices, energy, chromatic roots, domination\\nroots and the number of domatic partitions of graphs.\",\"PeriodicalId\":501462,\"journal\":{\"name\":\"arXiv - MATH - History and Overview\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - History and Overview\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.15860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关于黄金分割率$\phi=\frac{1+\sqrt{5}}{2}$的文章已经很多了,这个奇怪的数字在许多数学计算中都神秘地出现过。在本文中,我们将回顾这个数字在图论中的出现。更确切地说,我们回顾了这个数在诸如生成树数、拓扑指数、能量、色根、支配根和图的支配分区数等主题中的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Golden ratio in graph theory: A survey
Much has been written about the golden ratio $\phi=\frac{1+\sqrt{5}}{2}$ and this strange number appears mysteriously in many mathematical calculations. In this article, we review the appearance of this number in the graph theory. More precisely, we review the relevance of this number in topics such as the number of spanning trees, topological indices, energy, chromatic roots, domination roots and the number of domatic partitions of graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信