核磁共振晶体学中的均匀齐次方模型概率

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Leonard J Mueller
{"title":"核磁共振晶体学中的均匀齐次方模型概率","authors":"Leonard J Mueller","doi":"10.1039/d4fd00114a","DOIUrl":null,"url":null,"abstract":"A nearly universal component of NMR crystallography is the ranking of candidate structures based on how well their first-principles predicted NMR parameters align with the results of solid-state NMR experiments. Here, a novel approach for assigning probabilities to candidate models is proposed that quantifies the likelihood that each model is the correct experimental structure. This method employs hierarchical Bayesian inference and leverages explicit prior probabilities derived from a uniform distribution of potential candidate structures with respect to chi-squared values. The resulting uniform chi-squared (UC) model provides a more cautious estimate of candidate probabilities compared to previous approaches, assigning decreased likelihood to the best-fit structure and increased likelihood to alternate candidates. Although developed here within the context of NMR crystallography, the UC Model represents a general method for assigning likelihoods based on chi-squared goodness-of-fit assessments.","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":"94 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform Chi-Squared Model Probabilities in NMR Crystallography\",\"authors\":\"Leonard J Mueller\",\"doi\":\"10.1039/d4fd00114a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nearly universal component of NMR crystallography is the ranking of candidate structures based on how well their first-principles predicted NMR parameters align with the results of solid-state NMR experiments. Here, a novel approach for assigning probabilities to candidate models is proposed that quantifies the likelihood that each model is the correct experimental structure. This method employs hierarchical Bayesian inference and leverages explicit prior probabilities derived from a uniform distribution of potential candidate structures with respect to chi-squared values. The resulting uniform chi-squared (UC) model provides a more cautious estimate of candidate probabilities compared to previous approaches, assigning decreased likelihood to the best-fit structure and increased likelihood to alternate candidates. Although developed here within the context of NMR crystallography, the UC Model represents a general method for assigning likelihoods based on chi-squared goodness-of-fit assessments.\",\"PeriodicalId\":76,\"journal\":{\"name\":\"Faraday Discussions\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faraday Discussions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4fd00114a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00114a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

核磁共振晶体学的一个几乎普遍的组成部分是根据候选结构的第一原理预测核磁共振参数与固态核磁共振实验结果的吻合程度对候选结构进行排序。本文提出了一种为候选模型分配概率的新方法,该方法量化了每个模型是正确实验结构的可能性。这种方法采用了分层贝叶斯推理,并利用了从潜在候选结构的均匀分布得出的明确先验概率。与以前的方法相比,由此产生的统一卡方(UC)模型对候选概率的估计更加谨慎,对最佳拟合结构的可能性降低,而对其他候选结构的可能性增加。尽管 UC 模型是在核磁共振晶体学的背景下开发的,但它代表了一种基于卡方拟合度评估来分配可能性的通用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform Chi-Squared Model Probabilities in NMR Crystallography
A nearly universal component of NMR crystallography is the ranking of candidate structures based on how well their first-principles predicted NMR parameters align with the results of solid-state NMR experiments. Here, a novel approach for assigning probabilities to candidate models is proposed that quantifies the likelihood that each model is the correct experimental structure. This method employs hierarchical Bayesian inference and leverages explicit prior probabilities derived from a uniform distribution of potential candidate structures with respect to chi-squared values. The resulting uniform chi-squared (UC) model provides a more cautious estimate of candidate probabilities compared to previous approaches, assigning decreased likelihood to the best-fit structure and increased likelihood to alternate candidates. Although developed here within the context of NMR crystallography, the UC Model represents a general method for assigning likelihoods based on chi-squared goodness-of-fit assessments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信