厚集正是福尔纳密度为 1 的集合

Pub Date : 2024-07-22 DOI:10.1007/s00233-024-10456-4
Neil Hindman, Dona Strauss
{"title":"厚集正是福尔纳密度为 1 的集合","authors":"Neil Hindman, Dona Strauss","doi":"10.1007/s00233-024-10456-4","DOIUrl":null,"url":null,"abstract":"<p><i>Følner density</i> is a very natural notion of density which is defined on any semigroup satisfying the Strong Følner Condition (SFC). (These include all commutative semigroups and all left cancellative left amenable semigroups.) <i>Piecewise syndetic</i> and <i>thick</i> are notions of largeness arising from topological dynamics. It has been known that if <i>S</i> satisfies SFC and is either left cancellative or satisfies a weak right cancellation requirement, then every thick subset has density 1. We show here that in any semigroup <i>S</i> satisfying SFC a subset of <i>S</i> is thick if and only if it has density 1. As a consequence, every piecewise syndetic set has positive density.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thick sets are exactly the sets with Følner density 1\",\"authors\":\"Neil Hindman, Dona Strauss\",\"doi\":\"10.1007/s00233-024-10456-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Følner density</i> is a very natural notion of density which is defined on any semigroup satisfying the Strong Følner Condition (SFC). (These include all commutative semigroups and all left cancellative left amenable semigroups.) <i>Piecewise syndetic</i> and <i>thick</i> are notions of largeness arising from topological dynamics. It has been known that if <i>S</i> satisfies SFC and is either left cancellative or satisfies a weak right cancellation requirement, then every thick subset has density 1. We show here that in any semigroup <i>S</i> satisfying SFC a subset of <i>S</i> is thick if and only if it has density 1. As a consequence, every piecewise syndetic set has positive density.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10456-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10456-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

福尔纳密度是一个非常自然的密度概念,它定义在任何满足强福尔纳条件(SFC)的半群上(包括所有交换半群和所有左可抵消半群)。片状联合和厚是产生于拓扑动力学的大型概念。众所周知,如果 S 满足 SFC,并且是左可消的或满足弱右可消的要求,那么每个厚子集的密度都是 1。我们在此证明,在任何满足 SFC 的半群 S 中,当且仅当 S 的一个子集具有密度 1 时,它就是厚子集。因此,每个片断联合集都有正密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Thick sets are exactly the sets with Følner density 1

Følner density is a very natural notion of density which is defined on any semigroup satisfying the Strong Følner Condition (SFC). (These include all commutative semigroups and all left cancellative left amenable semigroups.) Piecewise syndetic and thick are notions of largeness arising from topological dynamics. It has been known that if S satisfies SFC and is either left cancellative or satisfies a weak right cancellation requirement, then every thick subset has density 1. We show here that in any semigroup S satisfying SFC a subset of S is thick if and only if it has density 1. As a consequence, every piecewise syndetic set has positive density.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信