A. Poyet, A. Bertarelli, F. Carra, S. D. Fartoukh, N. Fuster-Martínez, N. Karastathis, Y. Papaphilippou, M. Pojer, S. Redaelli, A. Rossi, K. Skoufaris, M. Solfaroli Camillocci, G. Sterbini
{"title":"在大型强子对撞机中使用导线进行束-束长程补偿的首个实验证据","authors":"A. Poyet, A. Bertarelli, F. Carra, S. D. Fartoukh, N. Fuster-Martínez, N. Karastathis, Y. Papaphilippou, M. Pojer, S. Redaelli, A. Rossi, K. Skoufaris, M. Solfaroli Camillocci, G. Sterbini","doi":"10.1103/physrevaccelbeams.27.071003","DOIUrl":null,"url":null,"abstract":"In high intensity and high energy colliders, such as the CERN Large Hadron Collider (LHC) and its future high-luminosity upgrade, interactions between the two beams around the different interaction points impose machine performance limitations. In fact, their effect reduces the beam lifetime, and therefore, the collider’s luminosity reach. Those interactions are called beam-beam long-range (BBLR) interactions, and a possible mitigation of their effect using dc wires was proposed for the first time in the early 2000’s. This solution is currently being studied as an option for enhancing the HL-LHC performance. In 2017 and 2018, four demonstrators of wire compensators have been installed in the LHC. A 2-yearlong experimental campaign followed in order to validate the possibility to mitigate the BBLR interactions in the LHC. During this campaign, a proof-of-concept was completed and motivated an additional set of experiments, successfully demonstrating the mitigation of BBLR interactions effects in beam conditions compatible with the operational configuration. This paper reports in detail the preparation of the experimental campaign, including the corresponding tracking simulations and the obtained results, and draws some perspectives for the future.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First experimental evidence of a beam-beam long-range compensation using wires in the Large Hadron Collider\",\"authors\":\"A. Poyet, A. Bertarelli, F. Carra, S. D. Fartoukh, N. Fuster-Martínez, N. Karastathis, Y. Papaphilippou, M. Pojer, S. Redaelli, A. Rossi, K. Skoufaris, M. Solfaroli Camillocci, G. Sterbini\",\"doi\":\"10.1103/physrevaccelbeams.27.071003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In high intensity and high energy colliders, such as the CERN Large Hadron Collider (LHC) and its future high-luminosity upgrade, interactions between the two beams around the different interaction points impose machine performance limitations. In fact, their effect reduces the beam lifetime, and therefore, the collider’s luminosity reach. Those interactions are called beam-beam long-range (BBLR) interactions, and a possible mitigation of their effect using dc wires was proposed for the first time in the early 2000’s. This solution is currently being studied as an option for enhancing the HL-LHC performance. In 2017 and 2018, four demonstrators of wire compensators have been installed in the LHC. A 2-yearlong experimental campaign followed in order to validate the possibility to mitigate the BBLR interactions in the LHC. During this campaign, a proof-of-concept was completed and motivated an additional set of experiments, successfully demonstrating the mitigation of BBLR interactions effects in beam conditions compatible with the operational configuration. This paper reports in detail the preparation of the experimental campaign, including the corresponding tracking simulations and the obtained results, and draws some perspectives for the future.\",\"PeriodicalId\":54297,\"journal\":{\"name\":\"Physical Review Accelerators and Beams\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Accelerators and Beams\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevaccelbeams.27.071003\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.071003","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
First experimental evidence of a beam-beam long-range compensation using wires in the Large Hadron Collider
In high intensity and high energy colliders, such as the CERN Large Hadron Collider (LHC) and its future high-luminosity upgrade, interactions between the two beams around the different interaction points impose machine performance limitations. In fact, their effect reduces the beam lifetime, and therefore, the collider’s luminosity reach. Those interactions are called beam-beam long-range (BBLR) interactions, and a possible mitigation of their effect using dc wires was proposed for the first time in the early 2000’s. This solution is currently being studied as an option for enhancing the HL-LHC performance. In 2017 and 2018, four demonstrators of wire compensators have been installed in the LHC. A 2-yearlong experimental campaign followed in order to validate the possibility to mitigate the BBLR interactions in the LHC. During this campaign, a proof-of-concept was completed and motivated an additional set of experiments, successfully demonstrating the mitigation of BBLR interactions effects in beam conditions compatible with the operational configuration. This paper reports in detail the preparation of the experimental campaign, including the corresponding tracking simulations and the obtained results, and draws some perspectives for the future.
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License.
It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.