具有可变系数、局部开尔文-沃伊特阻尼和时间延迟的耦合波方程的稳定性

Pub Date : 2024-07-26 DOI:10.1007/s00233-024-10453-7
Houssem Herbadji, Ammar Khemmoudj
{"title":"具有可变系数、局部开尔文-沃伊特阻尼和时间延迟的耦合波方程的稳定性","authors":"Houssem Herbadji, Ammar Khemmoudj","doi":"10.1007/s00233-024-10453-7","DOIUrl":null,"url":null,"abstract":"<p>We consider the stabilization of two weakly dissipative wave equations with variable coefficients, localized Kelvin–Voigt damping, mixed boundary condition and time delay. The well posedness is obtained by the semigroup method. Using a unique continuation result, we show that the system is strongly stable. Then, we show that the system is not exponentially stable. Finally, using a frequency domain approach combined with multiplier method, we establish a polynomial energy decay rate for the undelayed system. Then, we prove that the system with delay has the same decay rate.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of coupled wave equations with variable coefficients, localised Kelvin–Voigt damping and time delay\",\"authors\":\"Houssem Herbadji, Ammar Khemmoudj\",\"doi\":\"10.1007/s00233-024-10453-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the stabilization of two weakly dissipative wave equations with variable coefficients, localized Kelvin–Voigt damping, mixed boundary condition and time delay. The well posedness is obtained by the semigroup method. Using a unique continuation result, we show that the system is strongly stable. Then, we show that the system is not exponentially stable. Finally, using a frequency domain approach combined with multiplier method, we establish a polynomial energy decay rate for the undelayed system. Then, we prove that the system with delay has the same decay rate.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10453-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10453-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了两个具有可变系数、局部开尔文-沃伊特阻尼、混合边界条件和时间延迟的弱耗散波方程的稳定问题。我们用半群方法得到了方程的良好姿态。利用唯一续集结果,我们证明了系统的强稳定性。然后,我们证明系统不是指数稳定的。最后,我们利用频域方法结合乘法器方法,建立了无延迟系统的多项式能量衰减率。然后,我们证明有延迟的系统具有相同的衰减率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Stability of coupled wave equations with variable coefficients, localised Kelvin–Voigt damping and time delay

We consider the stabilization of two weakly dissipative wave equations with variable coefficients, localized Kelvin–Voigt damping, mixed boundary condition and time delay. The well posedness is obtained by the semigroup method. Using a unique continuation result, we show that the system is strongly stable. Then, we show that the system is not exponentially stable. Finally, using a frequency domain approach combined with multiplier method, we establish a polynomial energy decay rate for the undelayed system. Then, we prove that the system with delay has the same decay rate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信