论$$C_0$$-半群的均匀指数稳定性与解析量的有界性之间的等价性

Pub Date : 2024-07-24 DOI:10.1007/s00233-024-10455-5
Abdelhadi El Harfi
{"title":"论$$C_0$$-半群的均匀指数稳定性与解析量的有界性之间的等价性","authors":"Abdelhadi El Harfi","doi":"10.1007/s00233-024-10455-5","DOIUrl":null,"url":null,"abstract":"<p>We consider a <span>\\(C_0\\)</span>-semigroup on a Banach space such that the resolvent is uniformly bounded on the right half-plane. In this paper we provide a condition on the resolvent which is sufficient and necessary for the uniform exponential stability of such a semigroup. As a consequence, we give an alternative proof of Gearhart’s theorem (Trans. Amer. Math. Soc. <b> 236</b>, 385–394 (1978)). The approach lies on a complex inversion formula and tempered distributions.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the equivalence between the uniform exponential stability of a $$C_0$$ -semigroup and the boundedness of the resolvent\",\"authors\":\"Abdelhadi El Harfi\",\"doi\":\"10.1007/s00233-024-10455-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider a <span>\\\\(C_0\\\\)</span>-semigroup on a Banach space such that the resolvent is uniformly bounded on the right half-plane. In this paper we provide a condition on the resolvent which is sufficient and necessary for the uniform exponential stability of such a semigroup. As a consequence, we give an alternative proof of Gearhart’s theorem (Trans. Amer. Math. Soc. <b> 236</b>, 385–394 (1978)). The approach lies on a complex inversion formula and tempered distributions.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10455-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10455-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个巴拿赫空间上的\(C_0\)-半群,它的解析量在右半平面上是均匀有界的。在本文中,我们提供了一个关于解析量的条件,这个条件对于这种半群的均匀指数稳定性是充分和必要的。因此,我们给出了 Gearhart 定理的另一个证明(Trans.Amer.Math.236, 385-394 (1978) )。这种方法依赖于一个复杂的反转公式和调和分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the equivalence between the uniform exponential stability of a $$C_0$$ -semigroup and the boundedness of the resolvent

We consider a \(C_0\)-semigroup on a Banach space such that the resolvent is uniformly bounded on the right half-plane. In this paper we provide a condition on the resolvent which is sufficient and necessary for the uniform exponential stability of such a semigroup. As a consequence, we give an alternative proof of Gearhart’s theorem (Trans. Amer. Math. Soc. 236, 385–394 (1978)). The approach lies on a complex inversion formula and tempered distributions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信