Sai Tan, Qiuping Wang, Xulin Ma, Lu Sun, Xin Zhang, Xinlu Lv, Xin Sun
{"title":"基于集合预报的中国河南 \"7-20 \"特大暴雨可预测性分析","authors":"Sai Tan, Qiuping Wang, Xulin Ma, Lu Sun, Xin Zhang, Xinlu Lv, Xin Sun","doi":"10.1007/s11707-024-1106-1","DOIUrl":null,"url":null,"abstract":"<p>A heavy rainstorm occurred in Henan Province, China, between 19 and 21 July, 2021, with a record-breaking 201.9 mm of precipitation in 1 h. To explore the key factors that led to forecasting errors for this extreme rainstorm, as well as the dominant contributor affecting its predictability, we employed the Global/Regional Assimilation and Prediction System-Regional Ensemble Prediction System (GRAPES-REPS) to investigate the impact of the upper tropospheric cold vortex, middle-low vortex, and low-level jet on predictability and forecasting errors. The results showed that heavy rainfall was influenced by the following stable atmospheric circulation systems: subtropical highs, continental highs, and Typhoon In-Fa. Severe convection was caused by abundant water vapor, orographic uplift, and mesoscale vortices. Multiscale weather systems contributed to maintaining extreme rainfall in Henan for a long duration. The prediction ability of the optimal member of GRAPES-REPS was attributed to effective prediction of the intensity and evolution characteristics of the upper tropospheric cold vortex, middle-low vortex, and low-level jet. Conversely, the prediction deviation of unstable and dynamic conditions in the lower level of the worst member led to a decline in the forecast quality of rainfall intensity and its rainfall area. This indicates that heavy rainfall was strongly related to the short-wave throughput, upper tropospheric cold vortex, vortex, and boundary layer jet. Moreover, we observed severe uncertainty in GRAPES-REPS forecasts for rainfall caused by strong convection, whereas the predictability of rainfall caused by topography was high. Compared with the European Centre for Medium-Range Weather Forecasts Ensemble Prediction System, GRAPES-REPS exhibits a better forecast ability for heavy rainfall, with some ensemble members able to better predict extreme precipitation.</p>","PeriodicalId":48927,"journal":{"name":"Frontiers of Earth Science","volume":"15 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictability analysis based on ensemble forecasting of the “7·20” extreme rainstorm in Henan, China\",\"authors\":\"Sai Tan, Qiuping Wang, Xulin Ma, Lu Sun, Xin Zhang, Xinlu Lv, Xin Sun\",\"doi\":\"10.1007/s11707-024-1106-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A heavy rainstorm occurred in Henan Province, China, between 19 and 21 July, 2021, with a record-breaking 201.9 mm of precipitation in 1 h. To explore the key factors that led to forecasting errors for this extreme rainstorm, as well as the dominant contributor affecting its predictability, we employed the Global/Regional Assimilation and Prediction System-Regional Ensemble Prediction System (GRAPES-REPS) to investigate the impact of the upper tropospheric cold vortex, middle-low vortex, and low-level jet on predictability and forecasting errors. The results showed that heavy rainfall was influenced by the following stable atmospheric circulation systems: subtropical highs, continental highs, and Typhoon In-Fa. Severe convection was caused by abundant water vapor, orographic uplift, and mesoscale vortices. Multiscale weather systems contributed to maintaining extreme rainfall in Henan for a long duration. The prediction ability of the optimal member of GRAPES-REPS was attributed to effective prediction of the intensity and evolution characteristics of the upper tropospheric cold vortex, middle-low vortex, and low-level jet. Conversely, the prediction deviation of unstable and dynamic conditions in the lower level of the worst member led to a decline in the forecast quality of rainfall intensity and its rainfall area. This indicates that heavy rainfall was strongly related to the short-wave throughput, upper tropospheric cold vortex, vortex, and boundary layer jet. Moreover, we observed severe uncertainty in GRAPES-REPS forecasts for rainfall caused by strong convection, whereas the predictability of rainfall caused by topography was high. Compared with the European Centre for Medium-Range Weather Forecasts Ensemble Prediction System, GRAPES-REPS exhibits a better forecast ability for heavy rainfall, with some ensemble members able to better predict extreme precipitation.</p>\",\"PeriodicalId\":48927,\"journal\":{\"name\":\"Frontiers of Earth Science\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11707-024-1106-1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11707-024-1106-1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Predictability analysis based on ensemble forecasting of the “7·20” extreme rainstorm in Henan, China
A heavy rainstorm occurred in Henan Province, China, between 19 and 21 July, 2021, with a record-breaking 201.9 mm of precipitation in 1 h. To explore the key factors that led to forecasting errors for this extreme rainstorm, as well as the dominant contributor affecting its predictability, we employed the Global/Regional Assimilation and Prediction System-Regional Ensemble Prediction System (GRAPES-REPS) to investigate the impact of the upper tropospheric cold vortex, middle-low vortex, and low-level jet on predictability and forecasting errors. The results showed that heavy rainfall was influenced by the following stable atmospheric circulation systems: subtropical highs, continental highs, and Typhoon In-Fa. Severe convection was caused by abundant water vapor, orographic uplift, and mesoscale vortices. Multiscale weather systems contributed to maintaining extreme rainfall in Henan for a long duration. The prediction ability of the optimal member of GRAPES-REPS was attributed to effective prediction of the intensity and evolution characteristics of the upper tropospheric cold vortex, middle-low vortex, and low-level jet. Conversely, the prediction deviation of unstable and dynamic conditions in the lower level of the worst member led to a decline in the forecast quality of rainfall intensity and its rainfall area. This indicates that heavy rainfall was strongly related to the short-wave throughput, upper tropospheric cold vortex, vortex, and boundary layer jet. Moreover, we observed severe uncertainty in GRAPES-REPS forecasts for rainfall caused by strong convection, whereas the predictability of rainfall caused by topography was high. Compared with the European Centre for Medium-Range Weather Forecasts Ensemble Prediction System, GRAPES-REPS exhibits a better forecast ability for heavy rainfall, with some ensemble members able to better predict extreme precipitation.
期刊介绍:
Frontiers of Earth Science publishes original, peer-reviewed, theoretical and experimental frontier research papers as well as significant review articles of more general interest to earth scientists. The journal features articles dealing with observations, patterns, processes, and modeling of both innerspheres (including deep crust, mantle, and core) and outerspheres (including atmosphere, hydrosphere, and biosphere) of the earth. Its aim is to promote communication and share knowledge among the international earth science communities