Stella Cohen, Michael Dougherty, Andrew D. Harsh, Spencer Park Martin
{"title":"来自平面配置的非交叉分割网格","authors":"Stella Cohen, Michael Dougherty, Andrew D. Harsh, Spencer Park Martin","doi":"10.1007/s00454-024-00682-6","DOIUrl":null,"url":null,"abstract":"<p>The lattice of noncrossing partitions is well-known for its wide variety of combinatorial appearances and properties. For example, the lattice is rank-symmetric and enumerated by the Catalan numbers. In this article, we introduce a large family of new noncrossing partition lattices with both of these properties, each parametrized by a configuration of <i>n</i> points in the plane.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noncrossing Partition Lattices from Planar Configurations\",\"authors\":\"Stella Cohen, Michael Dougherty, Andrew D. Harsh, Spencer Park Martin\",\"doi\":\"10.1007/s00454-024-00682-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The lattice of noncrossing partitions is well-known for its wide variety of combinatorial appearances and properties. For example, the lattice is rank-symmetric and enumerated by the Catalan numbers. In this article, we introduce a large family of new noncrossing partition lattices with both of these properties, each parametrized by a configuration of <i>n</i> points in the plane.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00682-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00682-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
非交叉分割网格以其多种多样的组合外观和性质而闻名。例如,该网格是秩对称的,并由加泰罗尼亚数枚举。在这篇文章中,我们介绍了一大系列具有上述两种性质的新非交叉分割网格,每个网格的参数都是平面上 n 个点的配置。
Noncrossing Partition Lattices from Planar Configurations
The lattice of noncrossing partitions is well-known for its wide variety of combinatorial appearances and properties. For example, the lattice is rank-symmetric and enumerated by the Catalan numbers. In this article, we introduce a large family of new noncrossing partition lattices with both of these properties, each parametrized by a configuration of n points in the plane.