凸多边形、二面角、平均曲率和标量曲率

Pub Date : 2024-07-25 DOI:10.1007/s00454-024-00657-7
Misha Gromov
{"title":"凸多边形、二面角、平均曲率和标量曲率","authors":"Misha Gromov","doi":"10.1007/s00454-024-00657-7","DOIUrl":null,"url":null,"abstract":"<p>We approximate boundaries of convex polytopes <span>\\(X\\subset {\\mathbb {R}}^n\\)</span> by smooth hypersurfaces <span>\\(Y=Y_\\varepsilon \\)</span> with <i>positive mean curvatures</i> and, by using basic geometric relations between the scalar curvatures of Riemannian manifolds and the mean curvatures of their boundaries, establish <i>lower bound on the dihedral angles</i> of <i>X</i>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convex Polytopes, Dihedral Angles, Mean Curvature and Scalar Curvature\",\"authors\":\"Misha Gromov\",\"doi\":\"10.1007/s00454-024-00657-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We approximate boundaries of convex polytopes <span>\\\\(X\\\\subset {\\\\mathbb {R}}^n\\\\)</span> by smooth hypersurfaces <span>\\\\(Y=Y_\\\\varepsilon \\\\)</span> with <i>positive mean curvatures</i> and, by using basic geometric relations between the scalar curvatures of Riemannian manifolds and the mean curvatures of their boundaries, establish <i>lower bound on the dihedral angles</i> of <i>X</i>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00657-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00657-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们用具有正平均曲率的光滑超曲面 \(Y=Y_\varepsilon \)来近似凸多面体 \(X\subset {\mathbb {R}}^n\) 的边界,并利用黎曼流形的标量曲率与其边界的平均曲率之间的基本几何关系,建立 X 的二面角下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Convex Polytopes, Dihedral Angles, Mean Curvature and Scalar Curvature

We approximate boundaries of convex polytopes \(X\subset {\mathbb {R}}^n\) by smooth hypersurfaces \(Y=Y_\varepsilon \) with positive mean curvatures and, by using basic geometric relations between the scalar curvatures of Riemannian manifolds and the mean curvatures of their boundaries, establish lower bound on the dihedral angles of X.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信