利用大型语言模型分析财务报表

Alex Kim, Maximilian Muhn, Valeri Nikolaev
{"title":"利用大型语言模型分析财务报表","authors":"Alex Kim, Maximilian Muhn, Valeri Nikolaev","doi":"arxiv-2407.17866","DOIUrl":null,"url":null,"abstract":"We investigate whether an LLM can successfully perform financial statement\nanalysis in a way similar to a professional human analyst. We provide\nstandardized and anonymous financial statements to GPT4 and instruct the model\nto analyze them to determine the direction of future earnings. Even without any\nnarrative or industry-specific information, the LLM outperforms financial\nanalysts in its ability to predict earnings changes. The LLM exhibits a\nrelative advantage over human analysts in situations when the analysts tend to\nstruggle. Furthermore, we find that the prediction accuracy of the LLM is on\npar with the performance of a narrowly trained state-of-the-art ML model. LLM\nprediction does not stem from its training memory. Instead, we find that the\nLLM generates useful narrative insights about a company's future performance.\nLastly, our trading strategies based on GPT's predictions yield a higher Sharpe\nratio and alphas than strategies based on other models. Taken together, our\nresults suggest that LLMs may take a central role in decision-making.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Financial Statement Analysis with Large Language Models\",\"authors\":\"Alex Kim, Maximilian Muhn, Valeri Nikolaev\",\"doi\":\"arxiv-2407.17866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate whether an LLM can successfully perform financial statement\\nanalysis in a way similar to a professional human analyst. We provide\\nstandardized and anonymous financial statements to GPT4 and instruct the model\\nto analyze them to determine the direction of future earnings. Even without any\\nnarrative or industry-specific information, the LLM outperforms financial\\nanalysts in its ability to predict earnings changes. The LLM exhibits a\\nrelative advantage over human analysts in situations when the analysts tend to\\nstruggle. Furthermore, we find that the prediction accuracy of the LLM is on\\npar with the performance of a narrowly trained state-of-the-art ML model. LLM\\nprediction does not stem from its training memory. Instead, we find that the\\nLLM generates useful narrative insights about a company's future performance.\\nLastly, our trading strategies based on GPT's predictions yield a higher Sharpe\\nratio and alphas than strategies based on other models. Taken together, our\\nresults suggest that LLMs may take a central role in decision-making.\",\"PeriodicalId\":501139,\"journal\":{\"name\":\"arXiv - QuantFin - Statistical Finance\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Statistical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了 LLM 能否以类似于人类专业分析师的方式成功地进行财务报表分析。我们向 GPT4 提供了标准化的匿名财务报表,并指示模型对其进行分析,以确定未来收益的方向。即使没有任何叙述性信息或特定行业信息,LLM 在预测盈利变化的能力上也优于金融分析师。在分析师容易陷入困境的情况下,LLM 比人类分析师更具优势。此外,我们还发现 LLM 的预测准确率与经过严格训练的最先进 ML 模型的性能相当。LLM 的预测能力并非源于它的训练记忆。最后,与基于其他模型的策略相比,我们基于 GPT 预测的交易策略产生了更高的夏普比率(Sharperatio)和阿尔法比率(Alphas)。总之,我们的研究结果表明,LLM 可能会在决策中发挥核心作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Financial Statement Analysis with Large Language Models
We investigate whether an LLM can successfully perform financial statement analysis in a way similar to a professional human analyst. We provide standardized and anonymous financial statements to GPT4 and instruct the model to analyze them to determine the direction of future earnings. Even without any narrative or industry-specific information, the LLM outperforms financial analysts in its ability to predict earnings changes. The LLM exhibits a relative advantage over human analysts in situations when the analysts tend to struggle. Furthermore, we find that the prediction accuracy of the LLM is on par with the performance of a narrowly trained state-of-the-art ML model. LLM prediction does not stem from its training memory. Instead, we find that the LLM generates useful narrative insights about a company's future performance. Lastly, our trading strategies based on GPT's predictions yield a higher Sharpe ratio and alphas than strategies based on other models. Taken together, our results suggest that LLMs may take a central role in decision-making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信