图上无界拉普拉卡半线性热方程的胀大现象

Yong Lin, Shuang Liu, Yiting Wu
{"title":"图上无界拉普拉卡半线性热方程的胀大现象","authors":"Yong Lin, Shuang Liu, Yiting Wu","doi":"10.1007/s13163-024-00497-2","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(G=(V,E)\\)</span> be an infinite graph. The purpose of this paper is to investigate the nonexistence of global solutions for the following semilinear heat equation </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{lc} \\partial _t u=\\Delta u + u^{1+\\alpha }, &amp;{}\\, t&gt;0,x\\in V,\\\\ u(0,x)=u_0(x), &amp;{}\\, x \\in V, \\end{array} \\right. \\end{aligned}$$</span><p>where <span>\\(\\Delta \\)</span> is an unbounded Laplacian on <i>G</i>, <span>\\(\\alpha \\)</span> is a positive parameter and <span>\\(u_0\\)</span> is a nonnegative and nontrivial initial value. Using on-diagonal lower heat kernel bounds, we prove that the semilinear heat equation admits the blow-up solutions, which is viewed as a discrete analog of that of Fujita (J Fac Sci Univ Tokyo 13:109–124, 1966) and had been generalized to locally finite graphs with bounded Laplacians by Lin and Wu (Calc Var Partial Diff Equ 56(4):22, 2017). In this paper, new techniques have been developed to deal with unbounded graph Laplacians.</p>","PeriodicalId":501429,"journal":{"name":"Revista Matemática Complutense","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blow-up phenomenon to the semilinear heat equation for unbounded Laplacians on graphs\",\"authors\":\"Yong Lin, Shuang Liu, Yiting Wu\",\"doi\":\"10.1007/s13163-024-00497-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(G=(V,E)\\\\)</span> be an infinite graph. The purpose of this paper is to investigate the nonexistence of global solutions for the following semilinear heat equation </p><span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{array}{lc} \\\\partial _t u=\\\\Delta u + u^{1+\\\\alpha }, &amp;{}\\\\, t&gt;0,x\\\\in V,\\\\\\\\ u(0,x)=u_0(x), &amp;{}\\\\, x \\\\in V, \\\\end{array} \\\\right. \\\\end{aligned}$$</span><p>where <span>\\\\(\\\\Delta \\\\)</span> is an unbounded Laplacian on <i>G</i>, <span>\\\\(\\\\alpha \\\\)</span> is a positive parameter and <span>\\\\(u_0\\\\)</span> is a nonnegative and nontrivial initial value. Using on-diagonal lower heat kernel bounds, we prove that the semilinear heat equation admits the blow-up solutions, which is viewed as a discrete analog of that of Fujita (J Fac Sci Univ Tokyo 13:109–124, 1966) and had been generalized to locally finite graphs with bounded Laplacians by Lin and Wu (Calc Var Partial Diff Equ 56(4):22, 2017). In this paper, new techniques have been developed to deal with unbounded graph Laplacians.</p>\",\"PeriodicalId\":501429,\"journal\":{\"name\":\"Revista Matemática Complutense\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matemática Complutense\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13163-024-00497-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matemática Complutense","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13163-024-00497-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 \(G=(V,E)\) 是一个无限图。本文旨在研究以下半线性热方程全局解的不存在性 $$\begin{aligned}\left (开始) {lc}\partial _t u=Delta u + u^{1+\alpha }, &{}\, t>0,x\in V,\ u(0,x)=u_0(x), &{}\, x\in V, \end{array}.\对\end{aligned}$$其中 \(\Delta \)是G上的无界拉普拉奇,\(\alpha \)是一个正参数,\(u_0\)是一个非负且非零的初始值。利用对角线下热核边界,我们证明了半线性热方程承认炸开解,这被视为 Fujita(J Fac Sci Univ Tokyo 13:109-124,1966)的离散类比,并被 Lin 和 Wu(Calc Var Partial Diff Equ 56(4):22,2017)推广到具有有界拉普拉斯的局部有限图。本文开发了处理无界图拉普拉卡的新技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blow-up phenomenon to the semilinear heat equation for unbounded Laplacians on graphs

Let \(G=(V,E)\) be an infinite graph. The purpose of this paper is to investigate the nonexistence of global solutions for the following semilinear heat equation

$$\begin{aligned} \left\{ \begin{array}{lc} \partial _t u=\Delta u + u^{1+\alpha }, &{}\, t>0,x\in V,\\ u(0,x)=u_0(x), &{}\, x \in V, \end{array} \right. \end{aligned}$$

where \(\Delta \) is an unbounded Laplacian on G, \(\alpha \) is a positive parameter and \(u_0\) is a nonnegative and nontrivial initial value. Using on-diagonal lower heat kernel bounds, we prove that the semilinear heat equation admits the blow-up solutions, which is viewed as a discrete analog of that of Fujita (J Fac Sci Univ Tokyo 13:109–124, 1966) and had been generalized to locally finite graphs with bounded Laplacians by Lin and Wu (Calc Var Partial Diff Equ 56(4):22, 2017). In this paper, new techniques have been developed to deal with unbounded graph Laplacians.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信