分数对数薛定谔算子:性质和函数空间

IF 0.9 3区 数学 Q2 MATHEMATICS
Pierre Aime Feulefack
{"title":"分数对数薛定谔算子:性质和函数空间","authors":"Pierre Aime Feulefack","doi":"10.1007/s11868-024-00620-3","DOIUrl":null,"url":null,"abstract":"<p>In this note, we deal with the fractional logarithmic Schrödinger operator <span>\\((I+(-\\Delta )^s)^{\\log }\\)</span> and the corresponding energy spaces for variational study. The fractional (relativistic) logarithmic Schrödinger operator is the pseudo-differential operator with logarithmic Fourier symbol, <span>\\(\\log (1+|\\xi |^{2s})\\)</span>, <span>\\(s&gt;0\\)</span>. We first establish the integral representation corresponding to the operator and provide an asymptotics property of the related kernel. We introduce the functional analytic theory allowing to study the operator from a PDE point of view and the associated Dirichlet problems in an open set of <span>\\({\\mathbb {R}}^N.\\)</span> We also establish some variational inequalities, provide the fundamental solution and the asymptotics of the corresponding Green function at zero and at infinity.</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":"350 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The fractional logarithmic Schrödinger operator: properties and functional spaces\",\"authors\":\"Pierre Aime Feulefack\",\"doi\":\"10.1007/s11868-024-00620-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this note, we deal with the fractional logarithmic Schrödinger operator <span>\\\\((I+(-\\\\Delta )^s)^{\\\\log }\\\\)</span> and the corresponding energy spaces for variational study. The fractional (relativistic) logarithmic Schrödinger operator is the pseudo-differential operator with logarithmic Fourier symbol, <span>\\\\(\\\\log (1+|\\\\xi |^{2s})\\\\)</span>, <span>\\\\(s&gt;0\\\\)</span>. We first establish the integral representation corresponding to the operator and provide an asymptotics property of the related kernel. We introduce the functional analytic theory allowing to study the operator from a PDE point of view and the associated Dirichlet problems in an open set of <span>\\\\({\\\\mathbb {R}}^N.\\\\)</span> We also establish some variational inequalities, provide the fundamental solution and the asymptotics of the corresponding Green function at zero and at infinity.</p>\",\"PeriodicalId\":48793,\"journal\":{\"name\":\"Journal of Pseudo-Differential Operators and Applications\",\"volume\":\"350 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pseudo-Differential Operators and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-024-00620-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pseudo-Differential Operators and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00620-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将讨论分数对数薛定谔算子 \((I+(-\Delta )^s)^{\log }\) 和相应的能量空间,以进行变分研究。分数(相对论)对数薛定谔算子是具有对数傅里叶符号的伪微分算子,\(\log (1+|\xi |^{2s})\),\(s>0\)。我们首先建立了与算子相对应的积分表示,并提供了相关核的渐近性质。我们还建立了一些变分不等式,提供了基本解以及相应格林函数在零点和无穷远处的渐近性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The fractional logarithmic Schrödinger operator: properties and functional spaces

In this note, we deal with the fractional logarithmic Schrödinger operator \((I+(-\Delta )^s)^{\log }\) and the corresponding energy spaces for variational study. The fractional (relativistic) logarithmic Schrödinger operator is the pseudo-differential operator with logarithmic Fourier symbol, \(\log (1+|\xi |^{2s})\), \(s>0\). We first establish the integral representation corresponding to the operator and provide an asymptotics property of the related kernel. We introduce the functional analytic theory allowing to study the operator from a PDE point of view and the associated Dirichlet problems in an open set of \({\mathbb {R}}^N.\) We also establish some variational inequalities, provide the fundamental solution and the asymptotics of the corresponding Green function at zero and at infinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
59
期刊介绍: The Journal of Pseudo-Differential Operators and Applications is a forum for high quality papers in the mathematics, applications and numerical analysis of pseudo-differential operators. Pseudo-differential operators are understood in a very broad sense embracing but not limited to harmonic analysis, functional analysis, operator theory and algebras, partial differential equations, geometry, mathematical physics and novel applications in engineering, geophysics and medical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信