广义伯勒定理的一些变体及其应用

Dinh Tuan Huynh
{"title":"广义伯勒定理的一些变体及其应用","authors":"Dinh Tuan Huynh","doi":"arxiv-2407.16163","DOIUrl":null,"url":null,"abstract":"In the first part of this paper, we establish some results around generalized\nBorel's Theorem. As an application, in the second part, we construct example of\nsmooth surface of degree $d\\geq 19$ in $\\mathbb{CP}^3$ whose complements is\nhyperbolically embedded in $\\mathbb{CP}^3$. This improves the previous\nconstruction of Shirosaki where the degree bound $d=31$ was gave. In the last\npart, for a Fermat-Waring type hypersurface $D$ in $\\mathbb{CP}^n$ defined by\nthe homogeneous polynomial \\[ \\sum_{i=1}^m h_i^d, \\] where $m,n,d$ are positive\nintegers with $m\\geq 3n-1$ and $d\\geq m^2-m+1$, where $h_i$ are homogeneous\ngeneric linear forms on $\\mathbb{C}^{n+1}$, for a nonconstant holomorphic\nfunction $f\\colon\\mathbb{C}\\rightarrow\\mathbb{CP}^n$ whose image is not\ncontained in the support of $D$, we establish a Second Main Theorem type\nestimate: \\[ \\big(d-m(m-1)\\big)\\,T_f(r)\\leq N_f^{[m-1]}(r,D)+S_f(r). \\] This\nquantifies the hyperbolicity result due to Shiffman-Zaidenberg and Siu-Yeung.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some variants of the generalized Borel Theorem and applications\",\"authors\":\"Dinh Tuan Huynh\",\"doi\":\"arxiv-2407.16163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the first part of this paper, we establish some results around generalized\\nBorel's Theorem. As an application, in the second part, we construct example of\\nsmooth surface of degree $d\\\\geq 19$ in $\\\\mathbb{CP}^3$ whose complements is\\nhyperbolically embedded in $\\\\mathbb{CP}^3$. This improves the previous\\nconstruction of Shirosaki where the degree bound $d=31$ was gave. In the last\\npart, for a Fermat-Waring type hypersurface $D$ in $\\\\mathbb{CP}^n$ defined by\\nthe homogeneous polynomial \\\\[ \\\\sum_{i=1}^m h_i^d, \\\\] where $m,n,d$ are positive\\nintegers with $m\\\\geq 3n-1$ and $d\\\\geq m^2-m+1$, where $h_i$ are homogeneous\\ngeneric linear forms on $\\\\mathbb{C}^{n+1}$, for a nonconstant holomorphic\\nfunction $f\\\\colon\\\\mathbb{C}\\\\rightarrow\\\\mathbb{CP}^n$ whose image is not\\ncontained in the support of $D$, we establish a Second Main Theorem type\\nestimate: \\\\[ \\\\big(d-m(m-1)\\\\big)\\\\,T_f(r)\\\\leq N_f^{[m-1]}(r,D)+S_f(r). \\\\] This\\nquantifies the hyperbolicity result due to Shiffman-Zaidenberg and Siu-Yeung.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.16163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文的第一部分,我们围绕广义玻雷尔定理(generalizedBorel's Theorem)建立了一些结果。作为应用,在第二部分中,我们构造了$\mathbb{CP}^3$中度为$d\geq 19$的光滑曲面的例子,它的补集是超布尔嵌入$\mathbb{CP}^3$的。这改进了 Shirosaki 以前给出的度数约束 $d=31$ 的构造。在最后一部分,对于$\mathbb{CP}^n$中的费马-瓦林型超曲面$D$,由同次多项式 \[ \sum_{i=1}^m h_i^d, \] 定义,其中$m,n,d$为正整数,$mgeq 3n-1$,$dgeq m^2-m+1$、其中 $h_i$ 是 $\mathbb{C}^{n+1}$ 上的同素异形线性形式,对于非恒定全形函数 $f\colon\mathbb{C}\rightarrow\mathbb{CP}^n$ 而其图像不包含在 $D$ 的支持中,我们建立了第二主定理的类型估计:\[ \big(d-m(m-1)\big)\,T_f(r)\leq N_f^{[m-1]}(r,D)+S_f(r).\]这证明了 Shiffman-Zaidenberg 和 Siu-Yeung 的双曲性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some variants of the generalized Borel Theorem and applications
In the first part of this paper, we establish some results around generalized Borel's Theorem. As an application, in the second part, we construct example of smooth surface of degree $d\geq 19$ in $\mathbb{CP}^3$ whose complements is hyperbolically embedded in $\mathbb{CP}^3$. This improves the previous construction of Shirosaki where the degree bound $d=31$ was gave. In the last part, for a Fermat-Waring type hypersurface $D$ in $\mathbb{CP}^n$ defined by the homogeneous polynomial \[ \sum_{i=1}^m h_i^d, \] where $m,n,d$ are positive integers with $m\geq 3n-1$ and $d\geq m^2-m+1$, where $h_i$ are homogeneous generic linear forms on $\mathbb{C}^{n+1}$, for a nonconstant holomorphic function $f\colon\mathbb{C}\rightarrow\mathbb{CP}^n$ whose image is not contained in the support of $D$, we establish a Second Main Theorem type estimate: \[ \big(d-m(m-1)\big)\,T_f(r)\leq N_f^{[m-1]}(r,D)+S_f(r). \] This quantifies the hyperbolicity result due to Shiffman-Zaidenberg and Siu-Yeung.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信