无界算子和不确定性原理

Friedrich Haslinger
{"title":"无界算子和不确定性原理","authors":"Friedrich Haslinger","doi":"arxiv-2407.15803","DOIUrl":null,"url":null,"abstract":"We study a variant of the uncertainty principle in terms of the annihilation\nand creation operator on generalized Segal Bargmann spaces, which are used for\nthe FBI-Bargmann transform. In addition, we compute the Berezin transform of\nthese operators and indicate how to use spaces of entire functions in one\nvariable to study the Szeg\\H{o} kernel for hypersurfaces in $\\mathbb C^2.$","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unbounded operators and the uncertainty principle\",\"authors\":\"Friedrich Haslinger\",\"doi\":\"arxiv-2407.15803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a variant of the uncertainty principle in terms of the annihilation\\nand creation operator on generalized Segal Bargmann spaces, which are used for\\nthe FBI-Bargmann transform. In addition, we compute the Berezin transform of\\nthese operators and indicate how to use spaces of entire functions in one\\nvariable to study the Szeg\\\\H{o} kernel for hypersurfaces in $\\\\mathbb C^2.$\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.15803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们用广义西格尔-巴格曼空间上的湮灭与创造算子来研究不确定性原理的变体,这些算子被用于联邦调查局-巴格曼变换。此外,我们还计算了这些算子的贝雷津变换,并指出了如何使用单变量全函数空间来研究$\mathbb C^2.$中超曲面的Szeg\H{o}核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unbounded operators and the uncertainty principle
We study a variant of the uncertainty principle in terms of the annihilation and creation operator on generalized Segal Bargmann spaces, which are used for the FBI-Bargmann transform. In addition, we compute the Berezin transform of these operators and indicate how to use spaces of entire functions in one variable to study the Szeg\H{o} kernel for hypersurfaces in $\mathbb C^2.$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信