沿某一方向凸的函数几何亚族和布拉什克积

Liulan Li, Saminthan Ponnusamy
{"title":"沿某一方向凸的函数几何亚族和布拉什克积","authors":"Liulan Li, Saminthan Ponnusamy","doi":"arxiv-2407.14922","DOIUrl":null,"url":null,"abstract":"Consider the family of locally univalent analytic functions $h$ in the unit\ndisk $|z|<1$ with the normalization $h(0)=0$, $h'(0)=1$ and satisfying the\ncondition $${\\real} \\left( \\frac{z h''(z)}{\\alpha h'(z)}\\right) <\\frac{1}{2}\n~\\mbox{ for $z\\in \\ID$,} $$ where $0<\\alpha\\leq1$. The aim of this article is\nto show that this family has several elegant properties such as involving\nBlaschke products, Schwarzian derivative and univalent harmonic mappings.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric subfamily of functions convex in some direction and Blaschke products\",\"authors\":\"Liulan Li, Saminthan Ponnusamy\",\"doi\":\"arxiv-2407.14922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the family of locally univalent analytic functions $h$ in the unit\\ndisk $|z|<1$ with the normalization $h(0)=0$, $h'(0)=1$ and satisfying the\\ncondition $${\\\\real} \\\\left( \\\\frac{z h''(z)}{\\\\alpha h'(z)}\\\\right) <\\\\frac{1}{2}\\n~\\\\mbox{ for $z\\\\in \\\\ID$,} $$ where $0<\\\\alpha\\\\leq1$. The aim of this article is\\nto show that this family has several elegant properties such as involving\\nBlaschke products, Schwarzian derivative and univalent harmonic mappings.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.14922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑单位盘$|z|<1$中局部不等价解析函数$h$的族,其归一化为$h(0)=0$, $h'(0)=1$,并满足条件$${\real}。\left( \frac{z h''(z)}{\alpha h'(z)}\right) <\frac{1}{2}~\mbox{ for $z\in \ID$,} $$ 其中 $0<\alpha\leq1$.本文的目的是要证明这个族有几个优雅的性质,如涉及布拉斯克乘积、施瓦茨导数和单值谐波映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric subfamily of functions convex in some direction and Blaschke products
Consider the family of locally univalent analytic functions $h$ in the unit disk $|z|<1$ with the normalization $h(0)=0$, $h'(0)=1$ and satisfying the condition $${\real} \left( \frac{z h''(z)}{\alpha h'(z)}\right) <\frac{1}{2} ~\mbox{ for $z\in \ID$,} $$ where $0<\alpha\leq1$. The aim of this article is to show that this family has several elegant properties such as involving Blaschke products, Schwarzian derivative and univalent harmonic mappings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信