{"title":"所有的 Teichmuller 空间都不是星形的","authors":"Samuel L. Krushkal","doi":"arxiv-2407.18239","DOIUrl":null,"url":null,"abstract":"This paper is the final step in solving the problem of starlikeness of\nTeichmuller spaces in Bers' embedding. This step concerns the case of finite\ndimensional Teichmuller spaces ${\\mathbf T}(g, n)$ of positive dimension\n(corresponding to punctured Riemann surfaces of finite conformal type $(g, n)$\nwith $2g - 2 + n > 0$).","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All Teichmuller spaces are not starlike\",\"authors\":\"Samuel L. Krushkal\",\"doi\":\"arxiv-2407.18239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is the final step in solving the problem of starlikeness of\\nTeichmuller spaces in Bers' embedding. This step concerns the case of finite\\ndimensional Teichmuller spaces ${\\\\mathbf T}(g, n)$ of positive dimension\\n(corresponding to punctured Riemann surfaces of finite conformal type $(g, n)$\\nwith $2g - 2 + n > 0$).\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper is the final step in solving the problem of starlikeness of
Teichmuller spaces in Bers' embedding. This step concerns the case of finite
dimensional Teichmuller spaces ${\mathbf T}(g, n)$ of positive dimension
(corresponding to punctured Riemann surfaces of finite conformal type $(g, n)$
with $2g - 2 + n > 0$).