Jin Wang, Zhigao Zeng, Jianxin Wang, Jianming Zhang, Siyuan Zhou
{"title":"基于多分支聚集变换器的自动裂缝分割模型","authors":"Jin Wang, Zhigao Zeng, Jianxin Wang, Jianming Zhang, Siyuan Zhou","doi":"10.1177/13694332241266538","DOIUrl":null,"url":null,"abstract":"Crack detection plays a crucial role in evaluating the safety and durability of civil infrastructure. However, detecting cracks of uneven intensity in complex backgrounds is challenging. To overcome this problem, we propose a dual decoder network (CSMT) based on a multi-branch aggregation Transformer, which uses residual atrous spatial pyramid pooling (RASPP) and Transformer dual decoding branches to extract local and global features of different structures. To enhance global feature extraction, we designed a multi-branch aggregation Transformer (MAT) that adaptively weights the features of two attention heads from spatial and channel dimensions to achieve intra block feature aggregation between dimensions. Meanwhile, to obtain multi-scale semantic information, we constructed a new decoding branch, RASPP, which embeds a squeeze-and-excitation (SE) module and residual structures into standard ASPP. Finally, we propose a feature adaptive fusion module (FAM) to enhance feature fusion between adjacent layers and codec layers. Many experiments on three benchmark datasets have shown that the proposed CSMT segmentation network provides excellent performance in a variety of complex scenarios.","PeriodicalId":50849,"journal":{"name":"Advances in Structural Engineering","volume":"28 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic crack segmentation model based on multi-branch aggregation transformer\",\"authors\":\"Jin Wang, Zhigao Zeng, Jianxin Wang, Jianming Zhang, Siyuan Zhou\",\"doi\":\"10.1177/13694332241266538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crack detection plays a crucial role in evaluating the safety and durability of civil infrastructure. However, detecting cracks of uneven intensity in complex backgrounds is challenging. To overcome this problem, we propose a dual decoder network (CSMT) based on a multi-branch aggregation Transformer, which uses residual atrous spatial pyramid pooling (RASPP) and Transformer dual decoding branches to extract local and global features of different structures. To enhance global feature extraction, we designed a multi-branch aggregation Transformer (MAT) that adaptively weights the features of two attention heads from spatial and channel dimensions to achieve intra block feature aggregation between dimensions. Meanwhile, to obtain multi-scale semantic information, we constructed a new decoding branch, RASPP, which embeds a squeeze-and-excitation (SE) module and residual structures into standard ASPP. Finally, we propose a feature adaptive fusion module (FAM) to enhance feature fusion between adjacent layers and codec layers. Many experiments on three benchmark datasets have shown that the proposed CSMT segmentation network provides excellent performance in a variety of complex scenarios.\",\"PeriodicalId\":50849,\"journal\":{\"name\":\"Advances in Structural Engineering\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Structural Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13694332241266538\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Structural Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241266538","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Automatic crack segmentation model based on multi-branch aggregation transformer
Crack detection plays a crucial role in evaluating the safety and durability of civil infrastructure. However, detecting cracks of uneven intensity in complex backgrounds is challenging. To overcome this problem, we propose a dual decoder network (CSMT) based on a multi-branch aggregation Transformer, which uses residual atrous spatial pyramid pooling (RASPP) and Transformer dual decoding branches to extract local and global features of different structures. To enhance global feature extraction, we designed a multi-branch aggregation Transformer (MAT) that adaptively weights the features of two attention heads from spatial and channel dimensions to achieve intra block feature aggregation between dimensions. Meanwhile, to obtain multi-scale semantic information, we constructed a new decoding branch, RASPP, which embeds a squeeze-and-excitation (SE) module and residual structures into standard ASPP. Finally, we propose a feature adaptive fusion module (FAM) to enhance feature fusion between adjacent layers and codec layers. Many experiments on three benchmark datasets have shown that the proposed CSMT segmentation network provides excellent performance in a variety of complex scenarios.
期刊介绍:
Advances in Structural Engineering was established in 1997 and has become one of the major peer-reviewed journals in the field of structural engineering. To better fulfil the mission of the journal, we have recently decided to launch two new features for the journal: (a) invited review papers providing an in-depth exposition of a topic of significant current interest; (b) short papers reporting truly new technologies in structural engineering.